We have investigated several strong spin-orbit coupling ternary chalcogenides
related to the (Pb,Sn)Te series of compounds. Our first-principles calculations
predict the low temperature rhombohedral ordered phase in TlBiTe2, TlBiSe2, and
TlSbX2 (X=Te, Se, S) to be topologically Kane-Mele Z2 = -1 nontrivial. We
identify the specific surface termination that realizes the single Dirac cone
through first-principles surface state computations. This termination minimizes
effects of dangling bonds making it favorable for photoemission (ARPES)
experiments. Our analysis predicts that thin films of these materials would
harbor novel 2D quantum spin Hall states, and support odd-parity topological
superconductivity. For a related work also see arXiv:1003.2615v1. Experimental
ARPES results will be published elsewhere.Comment: Accepted for publication in Phys. Rev. Lett. (2010). Submitted March
201