84 research outputs found

    Chemically Ordered Pt–Co–Cu/C as Excellent Electrochemical Catalyst for Oxygen Reduction Reaction

    Get PDF
    This paper reveals the ordered structure and composition effect to electrochemical catalytic activity towards oxygen reduction reaction (ORR) of ternary metallic Pt–Co–Cu/C catalysts. Bimetallic Pt-Co alloy nanoparticles (NPs) represent an emerging class of electrocatalysts for ORR, but practical applications, e.g. in fuel cells, have been hindered by low catalytic performances owning to crystal phase and atomic composition. Cu is introduced into Pt-Co/C lattices to form PtCoxCu1−x/C (x = 0.25, 0.5 and 0.75) ternary-face-centered tetragonal (fct) ordered ternary metallic NPs. The chemically ordered Pt–Co–Cu/C catalysts exhibit excellent performance of 1.31 A mg−1 Pt in mass activity and 0.59 A cm−2 Pt in specific activity which are significantly higher than Pt-Co/C and commercial Johnson Matthey (JM) Pt/C catalysts, because of the ordered crystal phase and composition control modified the Pt-Pt atoms distance and the surface electronic properties. The presence of Cu improves the surface electronic structure, as well as enhances the stability of catalysts

    Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors

    Get PDF
    CuCo2S4 is regarded as a promising electrode material for supercapacitor, but has inferior conductivity and poor cycle stability which restrict its wide-range applications. In this work, hierarchically hybrid composite of CuCo2S4/carbon nanotubes (CNTs) was synthesized using a facile hydrothermal and sulfuration process. The embedded CNTs in the CuCo2S4 matrix provided numerous effective paths for electron transfer and ion diffusion, and thus promoted the faradaic reactions of the CuCo2S4 electrode in the energy storage processes. The CuCo2S4/CNTs-3.2% electrode exhibited a significantly increased specific capacitance of 557.5 F g-1 compared with those of the pristine CuCo2S4 electrode (373.4 F g-1) and CuO/Co3O4/CNTs-3.2% electrode (356.5 F g-1) at a current density of 1 A g-1. An asymmetric supercapacitor (ASC) was assembled using the CuCo2S4/CNTs-3.2% as the positive electrode and the active carbon as the negative electrode, which exhibited an energy density of 23.2 Wh kg-1 at a power density of 402.7 W kg-1. Moreover, the residual specific capacitance of this ASC device retained 85.7 % of its original value after tested for 10000 cycles, indicating its excellent cycle stability

    Enhanced functional properties of CeO2 modified graphene/epoxy nanocomposite coating through interface engineering

    Get PDF
    This paper reports significant enhancement of corrosion resistance and electrical properties of waterborne epoxy coatings through additions of ceria modified graphene. Results showed that ceria particles were uniformly distributed and covalently bonded onto the surface of graphene. A dense interface layer was formed between the ceria modified graphene and epoxy matrix by aliphatic ether bonds. The composite coating with a modified graphene content of 0.5 wt% exhibited the best corrosion resistance with the highest impedance modulus (e.g., 103 Ω cm2 for the damaged coating) and the lowest corrosion rate (e.g., 0.002 mm/year). The excellent corrosion resistance of the composite coating is related to the barrier effect of graphene and the inhibition effect of ceria on metal corrosion. Moreover, the coating showed a low percolation threshold of 0.231 vol% and its electrical conductivity reached 10−5 S/m when the content of modified graphene was 0.5 wt%

    Lipid-lowering drugs affect lung cancer risk via sphingolipid metabolism: a drug-target Mendelian randomization study

    Get PDF
    Background: The causal relationship between lipid-lowering drug (LLD) use and lung cancer risk is controversial, and the role of sphingolipid metabolism in this effect remains unclear.Methods: Genome-wide association study data on low-density lipoprotein (LDL), apolipoprotein B (ApoB), and triglycerides (TG) were used to develop genetic instrumental variables (IVs) for LLDs. Two-step Mendelian randomization analyses were performed to examine the causal relationship between LLDs and lung cancer risk. The effects of ceramide, sphingosine-1-phosphate (S1P), and ceramidases on lung cancer risk were explored, and the proportions of the effects of LLDs on lung cancer risk mediated by sphingolipid metabolism were calculated.Results:APOB inhibition decreased the lung cancer risk in ever-smokers via ApoB (odds ratio [OR] 0.81, 95% confidence interval [CI] 0.70–0.92, p = 0.010), LDL (OR 0.82, 95% CI 0.71–0.96, p = 0.040), and TG (OR 0.63, 95% CI 0.46–0.83, p = 0.015) reduction by 1 standard deviation (SD), decreased small-cell lung cancer (SCLC) risk via LDL reduction by 1 SD (OR 0.71, 95% CI 0.56–0.90, p = 0.016), and decreased the plasma ceramide level and increased the neutral ceramidase level. APOC3 inhibition decreased the lung adenocarcinoma (LUAD) risk (OR 0.60, 95% CI 0.43–0.84, p = 0.039) but increased SCLC risk (OR 2.18, 95% CI 1.17–4.09, p = 0.029) via ApoB reduction by 1 SD. HMGCR inhibition increased SCLC risk via ApoB reduction by 1 SD (OR 3.04, 95% CI 1.38–6.70, p = 0.014). The LPL agonist decreased SCLC risk via ApoB (OR 0.20, 95% CI 0.07–0.58, p = 0.012) and TG reduction (OR 0.58, 95% CI 0.43–0.77, p = 0.003) while increased the plasma S1P level. PCSK9 inhibition decreased the ceramide level. Neutral ceramidase mediated 8.1% and 9.5% of the reduced lung cancer risk in ever-smokers via ApoB and TG reduction by APOB inhibition, respectively, and mediated 8.7% of the reduced LUAD risk via ApoB reduction by APOC3 inhibition.Conclusion: We elucidated the intricate interplay between LLDs, sphingolipid metabolites, and lung cancer risk. Associations of APOB, APOC3, and HMGCR inhibition and LPL agonist with distinct lung cancer risks underscore the multifaceted nature of these relationships. The observed mediation effects highlight the considerable influence of neutral ceramidase on the lung cancer risk reduction achieved by APOB and APOC3 inhibition

    MXene (Ti3C2Tx) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC

    Get PDF
    The metal–support interaction offers electronic, compositional, and geometric effects that could enhance catalytic activity and stability. Herein, a high corrosion resistance and an excellent electrical conductivity MXene (Ti3C2Tx) hybrid with a carbon nanotube (CNT) composite material is developed as a support for Pt. Such a composite catalyst enhances durability and improved oxygen reduction reaction activity compared to the commercial Pt/C catalyst. The mass activity of Pt/CNT-MXene demonstrates a 3.4-fold improvement over that of Pt/C. The electrochemical surface area of Pt/CNT–Ti3C2Tx (1:1) catalysts shows only 6% drop with respect to that in Pt/C of 27% after 2000 cycle potential sweeping. Furthermore, the Pt/CNT–Ti3C2Tx (1:1) is used as a cathode catalyst for single cell and stack, and the maximum power density of the stack reaches 138 W. The structure distortion of the Pt cluster induced by MXene is disadvantageous to the desorption of O atoms. This issue can be solved by adding CNT on MXene to stabilize the Pt cluster. These remarkable catalytic performances could be attributed to the synergistic effect between Pt and CNT–Ti3C2Tx

    Half-Sphere Shell Supported Pt Catalyst for Electrochemical Methanol Oxidation

    Get PDF
    Bi-functional effect, elevated mass transport and increased durability have been combined within one catalyst for electrochemical methanol oxidation reaction. It has niobium (Nb) doped titanium dioxides (TiO2) nanosized half-sphere shell (HSS) as the substrate material deposited with small amount of Pt nanoparticles. These specially designed HSS nanostructure has significantly increased surface areas which are suitable for Pt nanoparticles to be deposited onto them to form the catalyst denoted as Pt/Nb-TiO2 HSS. It exhibits a remarkably high methanol oxidation activity of 0.21 V vs. RHE which is 0.05 V lower than HiSPEC10000 PtRu/C catalyst, due to the substrate's strong metal support interactions effect, bi-functional effect and the special structure. These HSS nanostructures have also increased the methanol diffusion and mass transport within the anode to give a maximum power output of 0.0931 W of cathode polarization in miniature direct methanol fuel cell (DMFC). It also acts as protection shells, which minimises the dissolution of Pt metal nanoparticles to prevent its diffusion through the membrane

    Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications

    Get PDF
    Graphene has been extensively explored to enhance functional and mechanical properties of metal matrix nanocomposites for wide-range applications due to their superior mechanical, electrical and thermal properties. This article discusses recent advances of key mechanisms, synthesis, manufacture, modelling and applications of graphene metal matrix nanocomposites. The main strengthening mechanisms include load transfer, Orowan cycle, thermal mismatch, and refinement strengthening. Synthesis technologies are discussed including some conventional methods (such as liquid metallurgy, powder metallurgy, thermal spraying and deposition technology) and some advanced processing methods (such as molecular-level mixing and friction stir processing). Analytical modelling (including phenomenological models, semi-empirical models, homogenization models, and self-consistent model) and numerical simulations (including finite elements method, finite difference method, and boundary element method) have been discussed for understanding the interface bonding and performance characteristics between graphene and different metal matrices (Al, Cu, Mg, Ni). Key challenges in applying graphene as a reinforcing component for the metal matrix composites and the potential solutions as well as prospectives of future development and opportunities are highlighted

    Porous Bilayer Electrode‐Guided Gas Diffusion for Enhanced CO 2 Electrochemical Reduction

    Get PDF
    Comparing with the massive efforts in developing innovative catalyst materials system and technologies, structural design of cells has attracted less attention on the road toward high‐performance electrochemical CO2 reduction reaction (eCO2RR). Herein, a hybrid gas diffusion electrode‐based reaction cell is proposed using highly porous carbon paper (CP) and graphene aerogels (GAs), which is expected to offer directional diffusion of gas molecules onto the catalyst bed, to sustain a high performance in CO2 conversion. The above‐mentioned hypothesis is supported by the experimental and simulation results, which show that the CP + GA combined configuration increases the Faraday efficiency (FE) from ≈60% to over 94% toward carbon monoxide (CO) and formate production compared with a CP only cell with Cu2O as the catalyst. It also suppresses the undesirable side reaction–hydrogen evolution over 65 times than the conventional H‐type cell (H‐cell). By combining with advanced catalysts with high selectivity, a 100% FE of the cell with a high current density can be realized. The described strategy sheds an extra light on future development of eCO2RR with a structural design of cell‐enabled high CO2 conversion

    Nanoscale mechanics of metal-coated graphene nanocomposite powders

    No full text
    Nanoscale mechanical properties of graphene and metal-coated graphene nanocomposite powders were evaluated using a nano-indentation method with an atomic force microscope. The obtained results were then verified using the data obtained from the first principle calculations. Graphene synthesized using the modified Hummer method showed a layered structure with a thickness of ∌ 1.1 nm. Metal coated graphene nanocomposite powders, including copper-coated graphene ones (Cu@graphene) and nickel-coated graphene ones (Ni@graphene), were synthesized using an in-situ co-reduction method. The obtained average values of Young's moduli of graphene, Cu@graphene and Ni@graphene from the nano-indentation tests were 0.98 TPa, 1.03 TPa and 1.06 TPa, and their moduli obtained using the first principle calculations were 1.051 TPa, 1.07 TPa, and 1.10 TPa, respectively. The calculated binding energy values between metal and graphene were − 1.54 eV for Cu@graphene and − 3.85 eV for Ni@graphene. Significant charge transfers between carbon atoms and metal atoms were found to apparently enhance the bond strengths of both Csingle bondC and metallic bonds

    Gate-voltage control of angular and spatial shifts for a dielectric slab containing graphene

    No full text
    By theoretically considering a dielectric slab containing graphene, we investigate the effect of the graphene layer on the angular Goos-HĂ€nchen (AGH) shifts and the transverse angular and spatial shifts from the spin-Hall effect of light (SHEL) for the reflection of a light beam. Through manipulating the voltage applied to graphene via an exterior gate, it was found that near the transmission resonance of the slab containing graphene, the giant and tunable AGH shifts and transverse shifts (TS) for both s-polarized and p-polarized waves are present. We also find that near the normal incident angle, the giant and tunable TS from SHEL for both s-polarized and p-polarized waves can occur on the interface containing graphene. It is expected that these phenomena can result in significant interesting and novel applications of graphene in all kinds of optical devices, and more
    • 

    corecore