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Abstract 

CuCo2S4 is regarded as a promising electrode material for supercapacitor, but has 

inferior conductivity and poor cycle stability which restrict its wide-range applications. 

In this work, hierarchically hybrid composite of CuCo2S4/carbon nanotubes (CNTs) 

was synthesized using a facile hydrothermal and sulfuration process. The embedded 

CNTs in the CuCo2S4 matrix provided numerous effective paths for electron transfer 

and ion diffusion, and thus promoted the faradaic reactions of the CuCo2S4 electrode in 

the energy storage processes. The CuCo2S4/CNTs-3.2% electrode exhibited a 

significantly increased specific capacitance of 557.5 F g-1 compared with those of the 

pristine CuCo2S4 electrode (373.4 F g-1) and CuO/Co3O4/CNTs-3.2% electrode (356.5 

F g-1) at a current density of 1 A g-1. An asymmetric supercapacitor (ASC) was 

assembled using the CuCo2S4/CNTs-3.2% as the positive electrode and the active 

carbon as the negative electrode, which exhibited an energy density of 23.2 Wh kg-1 at 

a power density of 402.7 W kg-1. Moreover, the residual specific capacitance of this 

ASC device retained 85.7 % of its original value after tested for 10000 cycles, 

indicating its excellent cycle stability. 

 

Key words: CuCo2S4, CNTs, Composite, Electrochemical performance, Supercapacitor. 
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1. Introduction 

Supercapacitor has received much attention in recent years owing to its short 

charge/discharge time, high power density, good cycle stability, low maintenance cost 

and environmental friendliness [1-3]. Many electrode materials including metal 

oxides/hydroxides [5, 6], metal sulfides [7], conductive polymers [8, 9] and carbon 

materials [4] have been investigated for the supercapacitors. Among them, the carbon 

materials exhibit low specific capacitances. Metal oxides/hydroxides generally have 

high theoretical capacitances, however the experimentally obtained capacitances are 

often much lower than their theoretical values [10]. In addition, many of these metal 

oxides/hydroxides exhibit poor rate capability. Transition-metal sulfides including 

Co3S4 [11, 12], Ni3S2 [13], MoS2 [14, 15], CuS [16, 17] and ZnS [7] have been reported 

to achieve large specific capacitances and high rate capability due to their good 

electrical conductivity and high electrochemical activity, and thus have been considered 

as the promising electrode materials for supercapacitors. Among them, cobalt sulfides 

have been attracted much attention due to their high capacitance values and good 

stability. However, cobalt is relatively expensive and toxic, which limits its practical 

application as electrode materials. Therefore, binary metal sulfides of MCo2S4 (M = Ni, 

Zn, Cu, Mn and etc.) [18-21] have received increasing attention due to their low cost 

and low toxicity. However, the capability and stability of these MCo2S4 compounds 

need to be significantly enhanced.   

One of the effective strategies to improve the specific capacitance and cycling 

stability of binary metal sulfides is to form hybrid structures with highly conductive 
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materials, such as carbon materials [22-24] and conducting polymer [10]. For examples, 

CuCo2S4/polyacrylonitrile exhibited a specific capacitance of 385 F g-1 at 1 A g-1 [25]. 

The polypyrrole/NiCo2S4 exhibited a specific capacitance of 911 F g-1 at 1 A g-1, which 

is higher than that of pure NiCo2S4 (470 F g-1) [10]. NiCo2S4/active carbon (AC) 

synthesized using a two-step hydrothermal method showed a specific capacitance of 

605.2 F g-1 at 0.5 A g-1 [26]. Due to their good electrical conductivity, excellent 

mechanical property and chemical stability, carbon nanotubes are often regarded as one 

of the promising candidates to construct the hybrid architectures of MCo2S4/CNTs 

composites for improving their electrochemical performance. The one dimensional 

structure of CNTs provides effective paths for electron transfer and ion diffusion, thus 

effectively reducing the charge transfer resistance of the composite [27]. For example, 

Jin et al prepared CNTs/CuCo2S4 nanocrystallite composites using a solvothermal 

method, which exhibited an specific capacitance of 606 F g-1 at 1 A g-1 [28]. However, 

these composites showed a poor cycle stability in the long-term charge/discharge 

processes.  

In this study, a hierarchically hybrid CuCo2S4/CNTs composite was prepared using 

a facile hydrothermal and sulfuration process, and then explored as a high-performance 

electrode material for supercapacitors. Firstly, Co3O4/CuO/CNTs composite was 

synthesized using a simple hydrothermal method, and then it was transformed into 

CuCo2S4/CNTs composite via a sulfuration process. Due to the reduced series 

resistance and charge transfer resistance, the CuCo2S4/CNTs electrode showed a higher 

specific capacitance than those of the pristine CuCo2S4 and the Co3O4/CuO /CNTs 
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electrodes. Moreover, an asymmetrical supercapacitor (ASC) was assembled using 

CuCo2S4/CNTs-3.2%(wt%) and active carbon as the positive and negative electrode, 

respectively, and it showed high energy densities and excellent cyclic stability.  

2. Experimental 

2.1 Preparation of Co3O4/CuO/CNTs composite 

All the chemical reagents used in this study are in analytical grades without any 

further purification. Carbon nanotubes (outer diameter: ~80 nm, purity: ≥95%) were 

purchased from Shenzhen Nanotech Port Co. Ltd. Co3O4/CuO/CNTs composite was 

prepared using a hydrothermal method. Firstly, 2.91 g Co(NO3)2∙6H2O, 0.79 g 

Cu(NO3)2∙3H2O and 3.60 g urea were dissolved in 80 mL deionized water and 

magnetically stirred for 30 min to form a purple solution. At the same time, the CNTs 

were dispersed in 20 mL deionized water and stirred for 30 min. Secondly, the above 

two solutions were mixed together and continuously stirred for 1 h. Thirdly, the above 

mixture was transferred into a 140 mL Teflon-lined autoclave and kept in an oven at 

120 oC for 6 h, and then cooled down to room temperature. After washed with deionized 

water and ethanol for three times, the product was dried at 80 oC for 12 h, and then 

annealed at 450 oC for 4 h to prepare for the Co3O4/CuO/CNTs composite. 

2.2  Preparation of CuCo2S4/CNTs composite 

The CuCo2S4/CNTs composites were synthesized using a sulfuration process. 0.10 g 

of Co3O4/CuO/CNTs composite was added into 30 mL of Na2S aqueous solution (0.4 

mol L-1) and stirred for 10 min. Then, the above solution was kept at 80 oC for 24 h. 

The obtained precipitate was washed with deionized water and ethanol for three times, 
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and then dried in a vacuum oven at 60 oC for 12 h to obtain the CuCo2S4/CNTs 

composite. By changing the amount of CNTs (e.g., 0, 20, 50 and 80 mg) in the above 

preparation process of Co3O4/CuO/CNTs composite, the CuCo2S4, CuCo2S4/CNTs-

1.3%, CuCo2S4/CNTs-3.2% and CuCo2S4/CNTs-5.0% (in wt%) were prepared, 

respectively. 

2.3 Characterization of samples 

X-ray diffraction (XRD, CuKα, 40 kV, 60 mA, Rigaku D/max-2400) was utilized to 

characterize the crystalline structure and average crystallite size of samples. Scanning 

electron microscope (SEM, InspectF50) was used to observe the morphology of 

samples. High-resolution transmission electron microscope (HRTEM JEM-2200FS) 

and selected area electron diffraction (SAED) were used for the microstructural analysis. 

Chemical states of elements in the composites were analyzed using X-ray photoelectron 

spectroscopy (XPS, KratosAxis-Ultra DLD, Japan) with a monochromatic Al Kα 

radiation. The specific surface area was measured by a N2 physisorption apparatus (JW-

BK122W, JWGB SCI. TECH.), and was determined using the Brunauer-Emmett-Teller 

(BET) theory. Fourier transform infrared (FT-IR) spectrum was obtained using an FT-

IR transmittance spectrometer (Nicolet 6700, USA). 

2.4 Electrochemical measurements 

All the electrochemical measurements including cyclic voltammetry (CV), 

galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy 

(EIS) were tested using an electrochemical workstation (CHI660E, Shanghai, China). 

To prepare a three-electrode testing set-up, the prepared slurry (80 wt% sample, 10 wt% 



7 

 

carbon black and 10 wt% polytetrafluoroethylene in ethanol) was coated on a piece of 

nickel foam (area of 1 × 1 cm-2, thickness of 1 mm), which is used as the working 

electrode, and platinum plate and Hg/HgO were used as the counter electrode and the 

reference electrode, respectively. Meanwhile, a 2 M KOH aqueous solution was used 

as the electrolyte. CV curves were obtained at a potential window of 0~0.6 V with a 

scan rate ranging from 5~50 mV s-1. The maximum voltage of GCDs was 0.45 V and 

the current density was from 1~8 A g-1. The EIS test was conducted using an open 

circuit voltage with an amplitude of 5 mV over the frequency range of 0.01~105 Hz. 

The specific capacitances of the electrode materials were calculated from the GCD 

curves according to the following formula [29]: 

𝐶𝑠 =
𝐼 × 𝑡

𝑚 × ∆𝑉
                            (1) 

where Cs is the specific capacitance (F g-1), I is the discharge current (mA), t is the 

discharge time (s), △V is the potential window (V) and m is the mass of the electrode 

material (mg). 

Asymmetric supercapacitor (ASC) devices were further assembled, in which the as-

prepared nanocomposite samples were used as the positive electrode and the active 

carbon (AC) as the negative electrode. The mass ratio between the positive and negative 

materials was calculated based on the charge balance theory, according to the formula 

(2) [30].  

𝑚+

𝑚−
=

𝐶− × ∆𝑉−

𝐶+ × ∆𝑉+
                           (2) 

Aqueous solution of 2 M KOH and a piece of cellulose paper were used as electrolyte 

and separator of the ASC device, respectively. 
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3. Results and discussion 

3.1 Material characterization 

 

Fig. 1 (a) SEM image, (b) TEM image (the inset is the corresponding SAED pattern), (c) 

HR-TEM image, and (d) element mapping of the CuCo2S4/CNTs-3.2% composite. 

 

The SEM image of CuCo2S4/CNTs-3.2% composite is shown in Fig. 1a. It can be 

seen that the CNTs are obviously embedded into the CuCo2S4 composite. This can 

provide effective paths for electron transfer and ion diffusion in the energy storage 

processes, and thus is favorable for the faradaic redox reactions on the surface of the 

CuCo2S4/CNTs composite. Fig. 1b shows a TEM image of CuCo2S4/CNTs. Clearly, 

there are many nano-pores in the composite, which can significantly increase the 

contact areas between electrode materials and electrolyte. The selected area electron 

diffraction (SAED) in Fig. 1b shows the polycrystalline nature of CuCo2S4. The lattice 

fringe shown in Fig. 1c is about 0.542 nm, which can be indexed to the (111) crystal 

plane of the CuCo2S4. Furthermore, the EDX mappings shown in Fig. 1d demonstrate 
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that elements of Cu, Co, S and C are uniformly distributed within the CuCo2S4/CNTs-

3.2% composite.  

 

Fig. 2 XRD spectra of (a) CuCo2S4/CNTs-3.2%, (b) CuCo2S4 and (c) Co3O4/CuO/CNTs-3.2%. 

 

XRD spectra of Co3O4/CuO/CNTs-3.2%, CuCo2S4 and CuCo2S4/CNTs-3.2% are 

shown in Fig. 2. From the XRD spectrum of the sample before sulfuration process 

shown in Fig. 2c, it is found that some diffraction peaks are corresponding to (111), 

(220), (311), (222), (400), (422), (511), (440) and (533) of the Co3O4 phase (JCPDS 

card No. 42-1467), while the left diffraction peaks are corresponding to (002), (111) 

and (220) of the CuO phase (JCPDS card No. 44-0706). This indicates that the sample 

obtained after the hydrothermal and post-annealing process is a mixture of Co3O4 and 

CuO crystals. 

Figs. 2a and 2b present the XRD spectra of the samples with and without CNTs after 

the sulfuration process, respectively. All the diffraction peaks are well indexed to (022), 

(113), (004), (224), (115) and (044) of the CuCo2S4 phase (JCPDS card No. 42-1450). 
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Therefore, it reveals that the Co3O4 and CuO crystals have been completely transformed 

into the CuCo2S4 crystals after the sulfuration process based on the following equation: 

 2Co3O4 + 3CuO + 12Na2S + 13H2O → 3CuCo2S4 + 24NaOH + H2     (3) 

Due to the low amount of CNTs, their XRD diffraction peaks cannot be detected. 

Furthermore, the crystal sizes (L) of CuCo2S4 and CuCo2S4/CNTs-3.2% composite 

were calculated using the Scherrer formula (4): 

𝐿 =
𝐾𝜆

𝛽cos𝜃
                            (4) 

where K is a constant (0.89), 𝜆 is the X-ray wavelength (0.15406 nm), 𝛽 is the line 

width of peak at half maximum height and 𝜃  is the diffracting angle. The average 

crystal sizes of CuCo2S4 for the pure CuCo2S4 and CuCo2S4/CNTs-3.2% composite 

were calculated to be 24.9 and 12.8 nm, respectively. Addition of CNTs reduces the 

average crystal sizes of CuCo2S4, which is probably because the presence of CNTs 

could separate and restrict the aggregation of CuCo2S4 nanocrystals, and thus inhibit 

their growth [31]. Moreover, the specific surface area of CuCo2S4/CNTs-3.2% is 14.1 

m2g-1, which is larger than that of CuCo2S4 (e.g., 8.9 m2g-1). Therefore, the 

CuCo2S4/CNTs-3.2% composite shows much smaller crystal size and larger specific 

surface area than those of the pristine CuCo2S4, which are beneficial for the redox 

reactions in the energy storage processes of supercapacitors.  



11 

 

 

Fig. 3 XPS spectra of (a) Co 2p, (b) Cu 2p, (c) S 2p and (d) C 1s of CuCo2S4/CNTs-3.2% 

 

Fig. 3 shows XPS spectra of Co 2p, Cu 2p, S 2p and C 1s of the CuCo2S4/CNTs-3.2% 

composite. The peaks at 797.2 and 781.0 eV in Fig. 3a are corresponding to Co3+, and 

the peaks at 792.9 and 777.8 eV are corresponding to Co2+ [32, 33]. The Cu 2p spectrum 

can be deconvoluted into two spin-orbit doublets as shown in Fig. 3b. The peaks at 

954.1 and 933.0 eV of the Cu 2p spectra can be assigned to Cu2+, whereas the peaks at 

951.4 and 931.5 eV can be assigned to Cu+ [34]. For the S 2p spectrum shown in Fig. 

3c, there are two major peaks at 162.5 and 161.2 eV, which can be indexed to S 2p1/2 

and S 2p3/2, respectively [28, 35]. Moreover, the C 1s spectrum shown in Fig. 3d can be 

fitted by three peaks at 284.5, 285.8 and 287.8 eV, which are attributed to C=C group 

in the CNTs, C-O and C=O groups on the surfaces of CNTs, respectively [36].  
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Fig. 4 FT-IR spectra of CuCo2S4/CNTs-3.2%, CuCo2S4 and Co3O4/CuO/CNTs-3.2%. 

 

Fig. 4 shows the FT-IR spectra of CuCo2S4, CuCo2S4/CNTs-3.2% and 

Co3O4/CuO/CNTs-3.2%. The vibration peaks related to O-H bonding at 3438 and 1630 

cm-1 are observed in all spectra of CuCo2S4, CuCo2S4/CNTs-3.2% and 

Co3O4/CuO/CNTs-3.2%, indicating that there are many hydroxyl groups on their 

surfaces. The peak at 1384 cm-1 in the spectra of CuCo2S4/CNTs-3.2% and 

Co3O4/CuO/CNTs-3.2% is attributed to the stretching vibration C−OH mode from the 

CNTs [37]. The Co-S and Cu-S stretching modes are observed at 1103 cm-1 and 616 

cm-1 in the spectra of CuCo2S4 and CuCo2S4/CNTs-3.2% [38, 39]. The peaks at 661 and 

568 cm-1 in the spectrum of Co3O4/CuO/CNTs-3.2% are attributed to the Co-O 

stretching vibration mode [40]. The peak at 661 cm-1 is assigned to tetrahedrally co-

ordinated Co(II)-O, and the peak at 568 cm-1 is assigned to octahedrally co-ordinated 

Co(III)-O, which confirm the formation of Co3O4 in the precursor [41]. Because of the 

intensity overlapping of the vibration peaks, the peak at 568 cm-1 in the spectrum of 



13 

 

Co3O4/CuO/CNTs-3.2% is also contributed by the Cu-O stretching vibration mode [42].  

3.2 Electrochemical characterization  

 

Fig. 5 (a) CV curves of CuCo2S4, CuCo2S4/CNTs-1.3%, 3.2%, 5.0% and Co3O4/CuO/CNTs-

3.2% at 10 mV s-1, (b) GCD curves of CuCo2S4, CuCo2S4/CNTs-1.3%, 3.2%, 5.0% and 

Co3O4/CuO/CNTs-3.2% at 1 A g-1, (c) specific capacitances of CuCo2S4, CuCo2S4/CNTs-

1.3%, 3.2%, 5.0% and Co3O4/CuO/CNTs-3.2% at 1 A g-1.  

 

Electrochemical performance of the pristine CuCo2S4, CuCo2S4/CNTs and 

Co3O4/CuO/CNTs electrodes was investigated using a three-electrode system in a 2 M 

KOH aqueous electrolyte. Fig. 5a shows the CV curves of CuCo2S4, CuCo2S4/CNTs-

1.3%, 3.2%, 5.0% and Co3O4/CuO/CNTs-3.2% at a scan rate of 10 mV s-1 in the 

potential range of 0~0.6 V. It can be seen that all the CV curves show closed patterns 

and have a pair of redox peaks, indicating that the energy storage mechanism of these 

electrodes is based on the Faradaic redox reaction processes as shown in the following 

equations [43-46]: 

CuCo2S4 + OH− + H2O ↔ CuSOH + 2CoSOH + e−          (5) 

CoSOH + OH− ↔ CoSO + H2O + e−               (6) 

CuSOH + OH− ↔ CuSO + H2O + e−               (7) 
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Co3O4 + OH− + H2O ↔ 3CoOOH + e−                    (8) 

CoOOH + OH− ↔ CoO2 + H2O + e−               (9) 

2CuO + H2O + 2e− ↔ Cu2O + 2OH−              (10) 

It is clear that the CV integrated area of the CuCo2S4/CNTs-3.2% electrode is much 

larger than those of the other electrodes, e.g., CuCo2S4, CuCo2S4/CNTs-1.3% and 

CuCo2S4/CNTs-5 .0%, demonstrating that the CuCo2S4/CNTs-3.2% electrode has the 

highest capacitance under the same scan rate. The longest discharge time of the 

CuCo2S4/CNTs-3.2% electrode among those of all other electrodes as shown in Fig. 5b 

further exhibits its highest capacitance. The specific capacitances were calculated from 

the data of the GCD curves in Fig. 5c using the formula (1). The specific capacitance is 

increased from 373.4 to 557.5 F g-1 with the increase of CNTs contents from 0 to 3.2%. 

However, when the content of CNTs is further increased to 5.0%, the specific 

capacitance is decreased. Therefore, the optimum CNTs content in the CuCo2S4/CNTs 

composites is about 3.2%. Adding the appropriate amount of CNTs increases the 

effective paths for electron transfer and electrolyte ion diffusion, and also increases the 

specific contact surface areas between electrolyte ions and CuCo2S4 electrode material, 

all of which facilitate the faradaic redox reactions on the surface of CuCo2S4. However, 

because of the low capacitance of CNTs, excess CNTs will result in the reduction of the 

capacitance of Co3O4/CuO/CNTs composite. Therefore, the specific capacitance of the 

CuCo2S4/CNTs-5.0% composite is thus decreased. Moreover, the CV integrated area 

and the discharge time of the CuCo2S4/CNTs-3.2% electrode are much larger than those 

of the Co3O4/CuO/CNTs-3.2% electrode, clearly indicating that the specific capacitance 
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of the CuCo2S4/CNTs-3.2% electrode is higher than that of the Co3O4/CuO/CNTs-3.2% 

(356.5 F g-1). The improvement in the capacitance is mainly attributed to the more 

active sites and lower resistance of CuCo2S4/CNTs-3.2% than those of the metal oxides 

[20]. 

 

Fig. 6 (a)CV curves of CuCo2S4/CNTs-3.2% at different scan rates, (b) GCD curves of 

CuCo2S4/CNTs-3.2% at different current densities, (c) specific capacitance readings of 

CuCo2S4, CuCo2S4/CNTs-1.3%, 3.2% and 5.0% and (d) Nyquist plots of CuCo2S4, 

CuCo2S4/CNTs-3.2% and Co3O4/CuO/CNTs-3.2% (the inset is the expanded high-

frequency region of the plots). 
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Table 1 The specific capacitance, series resistance and charge transfer resistance of all 

samples. 

Samples Cs (F g-1) at 1 A g-1  Rs (Ω) Rct (Ω) 

CuCo2S4 373.4 0.99 0.62 

CuCo2S4/CNTs-1.3% 500.6 0.91 0.47 

CuCo2S4/CNTs-3.2% 557.5 0.87 0.40 

CuCo2S4/CNTs-5.0% 361.3 0.84 0.38 

Co3O4/CuO/CNTs-3.2% 356.5 1.13 0.92 

 

Fig. 6a shows the CV curves of the CuCo2S4/CNTs-3.2% electrode at different scan 

rates ranging from 5~50 mV s-1. Because of the polarization effect of the electrode 

material, the positions of the oxidation/reduction peaks slightly move towards 

positive/negative potentials, respectively, with the increase of scan rate.[47, 48]. The 

obtained GCD curves of the CuCo2S4/CNTs-3.2% electrode at different current 

densities are shown in Fig. 6b. It can be seen that all the curves are nonlinear, indicating 

its pseudo-capacitance nature based on Faraday redox reactions. The specific 

capacitance values of the CuCo2S4/CNTs-3.2% electrode are 557.5, 506.7, 461.3, 421.4 

and 396.4 F g-1 at current densities of 1, 2, 4, 6 and 8 A g-1, respectively. These values 

are much higher than those of the other electrodes tested at different current densities 

as shown in Fig. 6c. 

The EIS measurement was further carried out to investigate the electrochemical 

kinetics of CuCo2S4, CuCo2S4/CNTs-3.2% and Co3O4/CuO/CNTs-3.2% electrodes. 

The obtained Nyquist plots are presented in Fig. 6d. All the curves display similar 

Nyquist plots, which consist of a semicircle in the high frequency region and a straight 
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line in the low frequency region. The intercept at the real axis in the high frequency 

region represents the series resistance (Rs), which includes the intrinsic resistance of 

the electrode materials/electrolyte and the contact resistance between electrode 

materials and current collector [49]. The diameter of the semicircle in the high 

frequency region is related to the charge-transfer resistance (Rct), and the slope of the 

inclined line in the lower frequency region represents the Warburg impedance (W), 

which is attributed to the ion diffusion in the electrolyte at the electrode interface [50, 

51]. The obtained Rs and Rct values of the CuCo2S4/CNTs-3.2% electrode are 0.87Ω 

and 0.40 Ω, respectively, which are much smaller than those of the pristine CuCo2S4 

electrode (0.99Ω and 0.62 Ω) and the Co3O4/CuO/CNTs-3.2% electrode (1.13Ω and 

0.92Ω), all of which are listed in Table 1. Therefore, the CuCo2S4/CNTs-3.2% electrode 

has lower series resistance and charge transfer resistance. In addition, the larger slope 

of the inclined line for the CuCo2S4/CNTs-3.2% electrode means that it has a much 

lower ion diffusion resistance than those of other electrodes. These results mean that 

the CNTs in CuCo2S4 composite can provide effective paths for both electron transfer 

and ion diffusion, which is favorable for faradaic redox reactions in energy storage 

processes, as schematically illustrated in Fig. 7. 

 

Fig. 7 Schematic illustration of CuCo2S4/CNTs-3.2%//AC device and the electron transfer 
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and ion diffusion of CuCo2S4/CNTs composite. 

 

 

Fig. 8 (a) CV curves of CuCo2S4/CNTs-3.2% and AC electrodes at a scan rate of 10 mV s-1, 

(b) CV curves of the device at a scan rate of 50 mV s-1 in different potential windows, (c) 

GCD curves of the device at a current density of 1 A g-1 in different potential windows, (d) 

CV curves of the device at different scan rates, (e) GCD curves of the device at different 

current densities, (f) Ragone plot of the device. 
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To further investigate the practical application of the CuCo2S4/CNTs-3.2% 

composite, an ASC device was tested, using CuCo2S4/CNTs-3.2% and active carbon 

(AC) as the positive and negative electrodes respectively (see Fig. 7). The operating 

potential window of the ASC device was obtained by measuring the CV curves of the 

positive and negative electrodes separately using the three-electrode system as shown 

in Fig. 8a. The obtained potential windows of positive and negative electrodes are 0~0.6 

V and -1~0 V, respectively. Therefore, the appropriate potential window of the ASC 

device is about 1.6 V. 

 In addition, the CV and GCD curves of the ASC device measured in the high 

potential range from 0.6~1.6 V are shown in Figs. 8b and 8c. At the highest voltage of 

1.6 V in CV curves, no obvious oxygen evolution reaction observed, indicating that the 

maximum voltage can be increased up to 1.6 V [52]. The GCD curves show that the 

ASC device can work stably at the highest voltage of 1.6 V. Fig. 8d shows the CV 

curves of the ASC device tested at different scan rates. A pair of obvious redox peaks 

appear in all the CV curves, indicating the redox characteristic of CuCo2S4/CNTs-3.2% 

composite generated from the Faradaic reaction process. Based on Fig. 8e (the GCD 

curves of the device obtained at different scan rates), the specific capacitance (Cd) of 

the device can be calculated using the following formula (11), and the results are 65.1, 

60.8, 55.6, 52.6 and 49.0 F g-1 at different current densities 0.5, 1, 2, 3 and 5 A g-1, 

respectively. 

𝐶𝑑 =
𝐼 × 𝑡

𝑀 × ∆𝑉
                            (11) 

where M (mg) is the total mass of the positive and negative electrodes. The energy 
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density and power density of the ASC device can be calculated using formula (12) and 

(13) [53-55].  

𝐸 =
𝐶𝑑 × ∆𝑉2

2 ×3.6
                           (12) 

𝑃 =
𝐸 ×3600

∆𝑡
                            (13) 

Based on these density values, the Ragone plots of the ASC device can be obtained and 

the results are shown in Fig. 8f. Notably, the ASC device displays a high energy density 

of 23.2 Wh kg-1 at a power density of 402.7 W kg-1. Even at a high power density of 

4266.7 W kg-1, the device still has an energy density of 17.4 Wh kg-1. The obtained 

energy and power density of the CuCo2S4/CNTs-3.2%//AC device are much better than 

those of metal sulfide based ASC devices reported in literature (see Fig. 8(f)), such as 

CuCo2S4//AC (15 Wh kg-1 at 400 W kg-1) [56], Co-Mn sulfide//rGO (18.4 Wh kg-1 at 

375 W kg-1) [57], Ni3S4//AC (18.6 Wh kg-1 at 150 W kg-1) [58], CuS1.96//AC (10.5 Wh 

kg-1at 750 W kg-1) [59], Co9S8//AC (20.0 Wh kg-1 at 828.5 W kg-1) [60] and CuS//AC 

(15.9 Wh kg-1 at 185.4 W kg-1) [49]. 

 

Fig. 9 (a) Cycling stability of the CuCo2S4/CNTs-3.2%//AC and CuCo2S4//AC device (insert 

photograph of lighting LED bulb), (b) Nyquist plot of the CuCo2S4/CNTs-3.2%//AC device 

before and after 10000 cycles. 
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The cyclic stability is one of the critical factors for the successful application of 

supercapacitors. The cyclic stabilities of the CuCo2S4//AC and CuCo2S4/CNTs-

3.2%//AC devices were tested at a current density of 3 A g-1 and the obtained 

capacitances values after 10000 cycles are shown in Fig. 9a. The capacitance of the 

CuCo2S4/CNTs-3.2%//AC device is 45.1 F g-1 after 10000 cycles, which retains 85.7% 

of its initial value. This value is much higher than that of the CuCo2S4//AC device (e.g., 

73.5%). It is also higher than those of previous reported CuCo2S4 based ASC devices 

in literature [61-63], indicating the excellent cyclic stability of the CuCo2S4/CNTs-

3.2%//AC device due to the addition of CNTs. Fig. 9b shows the EIS curves of the 

CuCo2S4/CNTs-3.2%//AC device before and after testing for 10000 cycles. The values 

of Rs (2.12 Ω) and Rct (0.67 Ω) are all quite small after 10,000 cycles, indicating that 

the CuCo2S4/CNTs-3.2% composite still maintains a good performance after long-term 

and repeated charges/discharges. Therefore, the CuCo2S4/CNTs-3.2% composite can be 

used as a good electrode material for supercapacitors with excellent electrochemical 

performance. 

4. Conclusion 

In summary, the CuCo2S4/CNTs composites have successfully been prepared using 

hydrothermal and sulfuration process. Appropriate amount of CNTs in the CuCo2S4 

composite can increase the specific surface areas, reduce the series and charge transfer 

resistances and enhance cycle stability during long-term charges and discharges. When 

the content of CNTs is 3.2% in the composite, the specific capacitance of 
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CuCo2S4/CNTs composite is increased up to 557.5 F g-1 from 373.4 F g-1 of the pristine 

CuCo2S4 at 1 A g-1. In addition, the specific capacitance of the Co3O4/CuO/CNTs- 3.2% 

composite is only 356.5 F g-1 at 1 A g-1, which is much lower than that of the 

CuCo2S4/CNTs-3.2% composite. The CuCo2S4/CNTs-3.2%//AC ASC device shows a 

good energy density of 23.2 Wh kg-1 at a power density of 402.7 W kg-1, and exhibits a 

better cycle stability than those previous reported CuCo2S4 based ASC devices, even 

after 10000 cycles. Therefore, adding the CNTs into the binary metal sulfides is an 

attractive strategy for the development of high-performance energy storage systems. 
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