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Background: The causal relationship between lipid-lowering drug (LLD) use and
lung cancer risk is controversial, and the role of sphingolipid metabolism in this
effect remains unclear.

Methods: Genome-wide association study data on low-density lipoprotein
(LDL), apolipoprotein B (ApoB), and triglycerides (TG) were used to develop
genetic instrumental variables (IVs) for LLDs. Two-step Mendelian
randomization analyses were performed to examine the causal relationship
between LLDs and lung cancer risk. The effects of ceramide, sphingosine-1-
phosphate (S1P), and ceramidases on lung cancer risk were explored, and the
proportions of the effects of LLDs on lung cancer risk mediated by sphingolipid
metabolism were calculated.

Results: APOB inhibition decreased the lung cancer risk in ever-smokers via ApoB
(odds ratio [OR] 0.81, 95% confidence interval [CI] 0.70–0.92, p = 0.010), LDL (OR
0.82, 95%CI 0.71–0.96, p=0.040), and TG (OR0.63, 95%CI 0.46–0.83, p=0.015)
reduction by 1 standard deviation (SD), decreased small-cell lung cancer (SCLC)
risk via LDL reduction by 1 SD (OR 0.71, 95% CI 0.56–0.90, p = 0.016), and
decreased the plasma ceramide level and increased the neutral ceramidase level.
APOC3 inhibition decreased the lung adenocarcinoma (LUAD) risk (OR 0.60, 95%
CI 0.43–0.84, p = 0.039) but increased SCLC risk (OR 2.18, 95% CI 1.17–4.09, p =
0.029) via ApoB reduction by 1 SD.HMGCR inhibition increased SCLC risk via ApoB
reduction by 1 SD (OR 3.04, 95% CI 1.38–6.70, p = 0.014). The LPL agonist
decreased SCLC risk via ApoB (OR 0.20, 95% CI 0.07–0.58, p = 0.012) and TG
reduction (OR 0.58, 95% CI 0.43–0.77, p = 0.003) while increased the plasma S1P
level. PCSK9 inhibition decreased the ceramide level. Neutral ceramidase
mediated 8.1% and 9.5% of the reduced lung cancer risk in ever-smokers via
ApoB and TG reduction by APOB inhibition, respectively, andmediated 8.7% of the
reduced LUAD risk via ApoB reduction by APOC3 inhibition.

Conclusion: We elucidated the intricate interplay between LLDs, sphingolipid
metabolites, and lung cancer risk. Associations of APOB, APOC3, and HMGCR
inhibition and LPL agonist with distinct lung cancer risks underscore the
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multifaceted nature of these relationships. The observed mediation effects
highlight the considerable influence of neutral ceramidase on the lung cancer
risk reduction achieved by APOB and APOC3 inhibition.
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1 Introduction

The incidence and mortality rates of lung cancer have consistently
increased in accordance with global patterns of malignant tumor
(Sharma, 2022). Despite continuous advancements and refinements in
lung cancer treatment, the pursuit of effective prevention methods to
mitigate the risk of developing this disease remains paramount (Kordiak
et al., 2022). Observational studies have suggested a potential association
between statin use and a reduced risk of lung cancer (Khurana et al.,
2007; Yang et al., 2015; Kwon et al., 2019). However, a case–control study
conducted within the UK population reported an increased risk of lung
cancer associated with long-term statin exposure (Vinogradova et al.,
2011). Furthermore, recentMendelian randomization (MR) studies have
challenged the notion of a causal relationship (Carter et al., 2020; Min
et al., 2023). Investigations of lipidomic profiles revealed that the use of
statins, PCSK9 inhibitors, and fenofibrate, instead of NPC1L1 inhibitors,
results in a reduction in plasma ceramide and sphingomyelin levels (Ng
et al., 2014; Tarasov et al., 2014; Ng et al., 2015; Croyal et al., 2018).
Nonetheless, findings regarding the impact of statins on plasma
sphingosine-1-phosphate (S1P) levels have exhibited inconsistency
(Egom et al., 2013; Therond and Chapman, 2022). Preclinical
investigations have elucidated the significant role of sphingolipid
metabolism in the pathogenesis of lung cancer (Ogretmen, 2018;
Meng et al., 2021; Tang et al., 2023), although the precise relationship
remains unclear (Lin et al., 2022). Among the sphingolipids, ceramide
and S1P have garnered particular attention within lung cancer studies
(Goldkorn et al., 2013). Notably, ceramidases play a pivotal role in the
conversion of ceramide to S1P (Pyne and Pyne, 2010). While a
case–control study has uncovered associations between higher
concentrations of plasma sphingosine-1-phosphate and ceramides and
the increasing risk of lung cancer, these findings contradict the preclinical
results that suggest that ceramides promote apoptosis in lung cancer cells
(Ogretmen and Hannun, 2004; Carpinteiro et al., 2008; Alberg et al.,
2013). Evidence on how lipid-lowering drugs (LLDs) may influence the
risk of lung cancer by modulating sphingolipid metabolites remains
elusive, along with the potential underlying mechanisms.

To explore the intricate relationships among LLDs, sphingolipid
metabolites (including plasma ceramide, ceramidase, and S1P), and
the risk of lung cancer, we employed a drug-target MR analysis
(Holmes et al., 2021) to address a critical knowledge gap and provide
valuable insights into potential chemoprevention in lung cancer.

2 Materials and methods

2.1 Study design

The results obtained from MR analysis, using data from
genome-wide association studies (GWAS) to analyze the effects

of exposure factors, closely resemble the findings of randomized
controlled trials. This resemblance can be attributed to the random
allocation of genetic variants during meiosis (Yarmolinsky et al.,
2022). The expression and functionality of drug targets can be
profoundly affected by genetic variations. Moreover, the impact of
drugs can be anticipated through the genetic variability present in the
genes encoding their protein targets (Chauquet et al., 2021). Similar to
the previous study, instrumental variables (IVs) for LLDswere extracted
from GWAS summary statistics related to low-density lipoprotein
(LDL), apolipoprotein B (ApoB), and triglycerides (TG), enabling an
analysis of the causal relationship between LLD exposure and the risk of
developing lung cancer (Williams et al., 2020; Xiao et al., 2023). To
clarify the mediating role of sphingolipid metabolites, we employed a
two-stepMR analysis. This involves utilizing the outcome variable from
the initial MR analysis as the exposure variable for the subsequent MR
analysis (Adams and Boutwell, 2021; Xu et al., 2022). Our analysis
investigates the impact of LLDs on plasma sphingolipid metabolite
(ceramide, S1P, and ceramidase) levels, alongside establishing a causal
link between these sphingolipid metabolites and lung cancer risk.
Additionally, we quantify the mediating influence of sphingolipid
metabolites on the association between LLDs and lung cancer risk.

2.2 Genetic variant selection

Information about chromosomal and gene loci for the eight LLD
targets (Williams et al., 2020), namely, ANGPTL3, APOB, APOC3,
HMGCR, LPL,NPC1L1, PCSK9, and PPARA, was obtained from the
National Center for Biotechnology Information gene database
(https://www.ncbi.nlm.nih.gov/gene) (see Table 1 and
Supplementary Table S1 for details).

We accessed the Medical Research Council Integrative
Epidemiology Unit (IEU) OpenGWAS database (https://gwas.
mrcieu.ac.uk/) and obtained GWAS summary statistics for LDL
(ieu-a-300, n = 173,082), TG (ieu-a-302, n = 177,861), and ApoB
(ieu-b-108, n = 439,214). These lipid traits were selected as they
represent downstream substances influenced by the effectiveness of
LLDs (Williams et al., 2020).

To generate IVs for LLDs, we used the LLD target genes,
involving four targets of drugs for decreasing LDL (APOB,
HMGCR, NPC1L1, and PCSK9), six targets of drugs for
decreasing ApoB (ANGPTL3, APOB, APOC3, LPL, PPARA, and
PCSK9), and five targets of drugs for decreasing TG (ANGPTL3,
APOB, APOC3, PPARA, and LPL) (Xiao et al., 2023). We confined
the single-nucleotide polymorphisms (SNPs) to those located within
a 100-kb range surrounding the LLD target genes that exhibited
genome-wide significance in their association with the lipid traits
(p < 5.0 × 10−8). To maximize the IV strength for each LLD target,
SNPs were allowed to be in weak linkage disequilibrium (r2 < 0.30,
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window size = 10,000 kb) with each other (Xie et al., 2023). Given the
absence of any genetic variation in PPARA during the selection process,
it has been excluded from subsequent evaluations (Li et al., 2023).

IV strength was assessed using the F-statistic, with values >
10 indicating non-weak IVs (Duan et al., 2021). Additionally, for a
positive control analysis, GWAS summary statistics for coronary
heart disease (CHD) obtained from CARDIoGRAM (ieu-a-8, n =
86,995) were utilized as the outcome measure (Huang et al., 2021).

2.3 Sources of GWAS summary statistics for
ceramidases and lung cancer

GWAS summary statistics for plasma ceramide
(GCST90025189, n = 6,057) and S1P levels (GCST90199657,

n = 8,246) were obtained from GWAS Catalog (Cadby et al.,
2022; Chen et al., 2023). Ceramidases are classified into acid,
neutral, and alkaline ceramidases based on their
pH characteristics. However, in the available datasets, there
were only GWAS summary statistics for acid and neutral
ceramidases (prot-a-178 and prot-a-179, n = 3,301) from the
IEU OpenGWAS database (Sun et al., 2018). The GWAS
summary statistics for lung cancer were sourced from the
publicly available dataset published by McKay et al. (2017),
which included lung cancer cases (n = 85,716) as well as
subgroups of ever-smokers (n = 40,187), never-smokers (n =
9,859), lung squamous cell carcinoma (LUSC) (n = 63,053), lung
adenocarcinoma (LUAD) (n = 66,756), and small-cell lung
cancer (SCLC) (n = 24,108). Table 2 lists the demographic
characteristics of detailed lung cancer GWAS summary statistics.

TABLE 1 Information on lipid-lowering drug targets included in the studies.

Examples of drugs/class Target Gene encoding target HGNC ID

Evinacumab Angiopoietin-like protein 3 (ANGPTL3) ANGPTL3 491

Mipomersen Apo-B 100 messenger RNA (ApoB-100) APOB 603

Volanesorsen Apolipoprotein C-3 (ApoC3) APOC3 610

Statins HMG-CoA reductase (HMGCR) HMGCR 5006

Alipogene tiparvovec Lipoprotein lipase (LPL) LPL 6677

Ezetimibe Niemann–Pick C1-like protein 1 (NPC1L1) NPC1L1 7897

Evolocumab Proprotein convertase subtilisin/kexin type 9 (PCSK9) PCSK9 20001

Fibrates Peroxisome proliferator-activated receptor alpha (PPARα) PPARA 9232

HGNC, HUGO Gene Nomenclature Committee.

TABLE 2 Demographic characteristics of GWAS statistics for lung cancer.

Subgroup No. of patients No. of controls No. of sum

Overall lung cancer 29,266 56,450 85,716

Age

<=50 3,112 6,032 9,144

>50 23,025 44,075 67,100

Sex

Male 18,208 27,178 45,386

Female 11,059 24,069 35,128

Smoking status

Never 2,355 7,504 9,859

Ever 23,223 16,964 40,187

Former 9,037 8,554 17,591

Current 13,356 7,477 20,833

Histology

LUAD 11,273 55,483 66,756

LUSC 7,426 55,627 63,053

SCLC 2,664 21,444 24,108

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small-cell lung cancer.
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2.4 Statistical analysis

MR analysis for the effects of LLDs on the risk of lung cancer and
sphingolipid metabolite levels was calculated. The clumping
procedure (r2 < 0.001, window size = 10,000 kb) was performed
to remove linkage disequilibrium, and SNPs that exhibited genome-
wide significance (p < 5.0 × 10−8) were selected as IVs for ceramide,
S1P, and acid/neutral ceramidases (Fang et al., 2023)
(Supplementary Table S3).

When only one SNP was available as the IV, we utilized the
Wald ratio method. Otherwise, we employed five methods: inverse
variance-weighted (IVW), MR-Egger, simple mode, weighted
median, and weighted mode. A reliable causal relationship was
defined as follows: estimates from the IVW method or the Wald
ratio method were statistically significant (p < 0.05) and were
consistent with the direction of causal estimates computed by the
MR-Egger method (Wang et al.).

To explore the mediating effect of sphingolipid metabolites
regarding the effect of LLDs on lung cancer risk, a two-step
MR analysis was performed. The proportion mediated by
sphingolipid metabolites was calculated using the following
formula (Chen et al., 2022; Zhao et al., 2022):
Ε(%) � Σk

k�1β1×β2k
Σk
k�1β3+β1×β2k

, where β1 represents the estimated effect of
LLDs on sphingolipid metabolites, β2 represents the estimated
effect of sphingolipid metabolites on lung cancer, and
β3 represents the estimated direct effect of LLDs on lung
cancer. The product of β1 and β2 is considered the indirect
effect, while (β3 + β1 × β2) represents the total effect. The
proportion is calculated when β1, β2, and β3 exhibit statistical
significance, as this quantifies the proportion of mediation by
sphingolipid metabolites within the total effect (Chen et al.,
2022). To account for multiple statistical tests and reduce
false-positive results, we controlled the false discovery rate
(FDR) using the Benjamini–Hochberg method. Adjusted p <
0.05 was considered statistically significant (Liu et al., 2023).

To assess the sensitivity of the MR results, we conducted MR-
Egger intercept tests and calculated Cochran’s Q statistic to evaluate
pleiotropy and heterogeneity. A significance level of p < 0.05 was
applied to determine statistical significance. All MR analyses were
performed using the “TwoSampleMR” package (version 0.5.6) in R
software (version 4.1.1), and forest plots were generated using the
“forestploter” package.

3 Results

3.1 Positive control analysis

We investigated the causal associations between the IVs for
inhibiting the LLD targets and CHD. Notably, the effect of
ANGPTL3 inhibition, whether via ApoB or TG reduction, did
not show statistically significant results in the positive control
analysis. Consequently, ANGPTL3 inhibition was excluded from
the subsequent MR analysis. The inhibition of the remaining six
LLD targets exhibited a significant causal association, with a reduced
risk of CHD. Figure 1 and Supplementary Table S4 show detailed
results, illustrating the magnitude and significance of these
associations.

3.2 The effects of LLDs on lung cancer risk

Figures 2, 3 and Supplementary Tables S5–S10 show the results
of our MR analysis, estimating the effects of LLDs on the risk of lung
cancer (overall) and in five subgroups (lung cancer in ever-smokers,
lung cancer in never-smokers, LUSC, LUAD, and SCLC).

APOB inhibition significantly decreased the risk of lung cancer
in ever-smokers [odds ratio (OR) 0.81, 95% confidence interval (CI)
0.70–0.92, p = 0.01] and SCLC (OR 0.70, 95% CI 0.55–0.88, p =
0.014) via ApoB reduction by 1 standard deviation (SD).
Additionally, APOB inhibition decreased the risk of lung cancer
in ever-smokers via LDL (OR 0.82, 95% CI 0.71–0.96, p = 0.040) and
TG (OR 0.62, 95% CI 0.46–0.83, p = 0.015) reduction by 1 SD.
Furthermore, APOB inhibition decreased the risk of SCLC via LDL
reduction (OR 0.71, 95% CI 0.56–0.90, p = 0.016).

APOC3 inhibition decreased the risk of LUAD via ApoB
reduction by 1 SD (OR 0.60, 95% CI 0.43–0.84, p = 0.039).
However, it increased the risk of SCLC via ApoB reduction (OR
2.18, 95% CI 1.17–4.09, p = 0.029).

Interestingly, HMGCR inhibition increased the risk of SCLC via
ApoB reduction by 1 SD (OR 3.04, 95% CI 1.38–6.70, p = 0.014). On
the other hand, the LPL agonist decreased the risk of SCLC via ApoB
(OR 0.20, 95% CI 0.07–0.58, p = 0.012) and TG (OR 0.58, 95% CI
0.43–0.77, p = 0.003) reduction by 1 SD. The MR analysis conducted
exhibited neither pleiotropy nor heterogeneity.

3.3 The effects of LLDs on ceramide, S1P,
and ceramidases

Figure 4 and Supplementary Tables S11–S14 show the results of
MR analysis, estimating the effects of LLDs on plasma ceramide,
S1P, and ceramidases levels. APOB inhibition decreased the plasma
ceramide level via ApoB (OR 0.67, 95% CI 0.55–0.82, p = 5.21 ×
10−4), LDL (OR 0.60, 95% CI 0.48–0.74, p = 3.76 × 10−5), and TG
(OR 0.47, 95% CI 0.29–0.77, p = 0.007) reduction by 1 SD. Similarly,
PCSK9 inhibition decreased the plasma ceramide level via ApoB
(OR 0.59, 95% CI 0.43–0.80, p = 0.003) and LDL (OR 0.76, 95% CI

FIGURE 1
Results of positive control analysis. LDL, low-density lipoprotein;
ApoB, apolipoprotein B; TG, triglycerides; SNPs, single-nucleotide
polymorphisms; FDR, false discovery rate.
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0.60–0.98, p = 0.061) reduction by 1 SD. Conversely, the LPL agonist
increased the plasma ceramide level via ApoB (OR 3.45, 95% CI
1.23–9.66, p = 0.044) reduction by 1 SD and increased the plasma
S1P level via ApoB (OR 2.71, 95% CI 1.63–4.51, p = 7.03 × 10−4) and
TG (OR 1.34, 95% CI 1.19–1.52, p = 2.88 × 10−5) reduction by 1 SD.
Interestingly, APOB inhibition increased the plasma neutral
ceramidase level via ApoB (OR 1.27, 95% CI 1.07–1.51, p = 0.03)
and TG (OR 1.90, 95% CI 1.17–3.09, p = 0.034) reduction by 1 SD.
Although APOB inhibition increased the plasma neutral ceramidase
level via LDL reduction, it did not reach statistical significance after
correction (OR 1.25, 95% CI 1.03–1.51, p = 0.072). However, LLDs
did not significantly impact plasma acid ceramidase levels. The MR
analysis exhibited neither pleiotropy nor heterogeneity.

3.4 The effects of sphingolipid metabolites
on lung cancer risk

Our MR analysis revealed that an increase in the plasma neutral
ceramidase level by 1 SD decreased the risk of overall lung cancer
(OR 0.95, 95% CI 0.91–0.99, p = 0.032), lung cancer in ever-smokers
(OR 0.92, 95% CI 0.88–0.98, p = 0.024), LUAD (OR 0.93, 95% CI
0.88–0.99, p = 0.043), and LUSC (OR 0.93, 95% CI 0.86–0.99, p =
0.041) (Figure 5A; Supplementary Table S15). However, there was
no evidence of a causal relationship between the plasma acid
ceramidase level and risk of lung cancer (Figure 5B;
Supplementary Table S16). The plasma ceramide levels exhibited
a positive correlation with heightened lung cancer risk in

FIGURE 2
Heatmap of the causal relationship between LLDs, lung cancer, and ceramidases.

FIGURE 3
Estimated effects of LLD on the risk of (A) lung cancer (overall); (B) lung cancer in ever-smokers; (C) lung cancer in never-smokers; (D) LUSC; (E)
LUAD; and (F) SCLC. FDR-adjusted p-values with statistical significance (<0.05) are shown in bold. LDL, low-density lipoprotein; ApoB, apolipoprotein B;
TG, triglycerides; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small-cell lung cancer; FDR, false discovery rate.
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never-smokers; however, this relationship did not achieve statistical
significance following correction (OR 1.49, 95% CI 1.10–2.01, p =
0.054) (Figure 5C; Supplementary Table S17). As the IVs of S1P did
not intersect with the SNPs present in the GWAS data for lung
cancer, the execution of this MR analysis was rendered unfeasible.
The MR analysis exhibited neither pleiotropy nor heterogeneity.

3.5 Analysis of the mediating effects of
sphingolipid metabolites

The aforementioned results suggested that neutral ceramidase
plays a mediating role in the effect of LLDs on lung cancer risk.
Table 3 shows the proportions mediated by neutral ceramidase
regarding the negative effect of APOB inhibition on lung cancer risk
in smokers via ApoB and TG reduction (8.1% and 9.5%,
respectively) and the negative effect of APOC3 inhibition on
LUAD risk via ApoB reduction (8.7%). Figure 6 illustrates
schematic diagrams of the direct and indirect effects of LLDs on
lung cancer and the mediation by neutral ceramidase.

4 Discussion

In this drug-target MR analysis, we assessed the effects of LLDs
on lung cancer risk via six LLD targets (APOB, APOC3, HMGCR,

LPL, NPC1L1, and PCSK9), comprising 12 lipid-lowering pathways.
Our findings revealed that APOB inhibition decreased the lung
cancer risk in ever-smokers and SCLC. APOC3 inhibition decreased
the LUAD risk but increased the SCLC risk. Additionally, HMGCR
inhibition increased the risk of SCLC, whereas the LPL agonist
decreased the risk of SCLC.

We delved deeper into the mediating mechanisms involving
sphingolipid metabolites within these processes. Our investigation
revealed that inhibiting APOB, APOC3, and HMGCR increased
plasma neutral ceramidase levels. Notably, we observed that
neutral ceramidase played a protective role in various forms of
lung cancer, including overall lung cancer, lung cancer in ever-
smokers, LUAD, and LUSC. These findings highlight the potential
therapeutic significance of neutral ceramidase as a mitigating factor
in the development and progression of various types of lung cancer.
In addition, we found that APOB and PCSK9 inhibition led to a
reduction in plasma ceramide levels, while the LPL agonist increased
plasma ceramide and S1P levels. Nonetheless, no substantiated
evidence has emerged to establish a causal link between
ceramides and the risk of lung cancer.

Several MR studies have explored the potential preventive effects
of LLDs on malignancies (Carter et al., 2020; Liu et al., 2021a; Min
et al., 2023); however, these investigations have primarily focused on
statins and have not included stratified analysis of different subtypes
of lung cancer. In contrast to previous MR studies, our study
expands the range of LLD targets under consideration. In our

FIGURE 4
Estimated effects of LLD on plasma (A) ceramide; (B) S1P; (C) neutral ceramidase; and (D) acid ceramidase levels. FDR-adjusted p-values with
statistical significance (<0.05) are shown in bold. LDL, low-density lipoprotein; ApoB, apolipoprotein B; TG, triglycerides; FDR, false discovery rate; S1P,
sphingosine-1-phosphate.
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positive control analysis, we observed that ANGPTL3 inhibition did
not achieve statistical significance. This finding aligns with the
results reported by Wang et al. (2021). We made the decision
not to conduct further analysis for ANGPTL3 inhibition in
subsequent MR analysis.

In contrast to previous MR analysis of the effects of statins on
lung cancer risk, our study reveals novel findings that HMGCR
inhibition increases the risk of SCLC, as does APOC3 inhibition.
This aligns with the findings reported by Vinogradova et al.,
where the link between statins and heightened lung cancer risk
persisted even after adjusting for cardiovascular factors.
However, their investigation lacked a subgroup analysis
focusing on lung cancer types (Vinogradova et al., 2011).
Moreover, evidence hints at the potential for long-term statin
use to heighten cancer risk in women (Friedman et al., 2008).
The mechanistic underpinnings behind the potential of
statins in increasing SCLC risk remain elusive. We posited
that this effect might stem from off-target consequences

associated with prolonged statin use (Liu et al., 2021b; Jiang
et al., 2023).

Immunohistochemical assessments of lung cancer tissue
samples have unveiled lower protein expression of APOC3 in
SCLC compared to normal lung tissue. This discrepancy might
propose a pathway through which APOC3 inhibitors heighten the
vulnerability to SCLC (Shi et al., 2016). Furthermore, an
investigation under the UK’s Early Access to Medicines Scheme
reported instances of lung cancer metastasis after the prolonged
utilization of APOC3 inhibitors (volanesorsen) (Jones et al., 2023).
Our findings strongly advocate for heightened vigilance concerning
the potential for APOC3 inhibitors to increase lung cancer risk.

While alipogene tiparvovec acts as an LPL agonist, its limited
market presence and high cost (Senior, 2017) have left the landscape
of observational inquiries into its long-term cancer risk ambiguous.
Nonetheless, our study propounds a shielding effect of LPL agonists
against SCLC susceptibility. Moreover, Cerne et al. (2007) reported
diminished LPL gene expression within lung cancer tissues as
opposed to normal tissues, potentially reinforcing the notion of
LPL agonists mitigating lung cancer risk.

The observed causal relationships between APOB inhibition and
reduced lung cancer risk in ever-smokers and LUAD risk are
particularly noteworthy, as neutral ceramidase plays a significant
mediating role in these relationships. In recent years, there has been
increasing research into the role and mechanisms of neutral
ceramidase in malignancies (Coant and Hannun, 2019).
Preclinical studies have demonstrated that inhibiting neutral
ceramidase can prevent the occurrence and progression of colon
cancer (Garcia-Barros et al., 2016), whereas inhibiting acid
ceramidase can inhibit the proliferation of non-small-cell lung
cancer and enhance its sensitivity to cisplatin (Yildiz-Ozer et al.,
2018; White-Gilbertson et al., 2019). However, observational studies
have presented contrasting findings, with high levels of acid
ceramidase being associated with improved prognosis in breast
and ovarian cancers (Ruckhaberle et al., 2009; Hanker et al.,
2013; Sanger et al., 2015). The conflicting results from clinical
observational studies and preclinical studies suggest that
ceramidases may have pleiotropic effects on the occurrence,
treatment, and prognosis of cancers. These findings highlight the
complex and multifaceted nature of ceramidases in cancer-related
processes. In our MR analysis, we identified a causal relationship
between increased neutral ceramidase and a reduced risk of lung
cancer in ever-smokers. This suggests that neutral ceramidase may
play a critical role in the development of smoking-induced lung
cancer, with APOB inhibition potentially acting as a protective
factor. Further research is warranted to elucidate the precise
mechanisms underlying their effects and to reconcile the
disparities observed among different types of cancer.

FIGURE 5
Estimated effects of plasma (A) neutral ceramidase; (B) acid
ceramidase; and (C) ceramide levels on lung cancer risk. FDR-adjusted
p-values with statistical significance (<0.05) are shown in bold. LUAD,
lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
SCLC, small-cell lung cancer; FDR, false discovery rate.

TABLE 3 Proportions mediated by neutral ceramidase regarding the effects of LLD on lung cancer risk.

LLD target Lung cancer subgroup β1 β2 β3 Proportion (%)

APOB (via ApoB reduction) Ever-smokers 0.241 −0.079 −0.216 8.1

APOB (via TG reduction) Ever-smokers 0.642 −0.079 −0.486 9.5

APOC3 (via ApoB reduction) LUAD 0.716 −0.069 −0.513 8.7

LLD, lipid-lowering drugs; ApoB, apolipoprotein B; TG, triglycerides; LUAD, lung adenocarcinoma.
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Ceramidases play essential regulatory roles in the onset and
advancement of various cancer forms (Sanger et al., 2015; Garcia-
Barros et al., 2016) and are pivotal in sphingolipid metabolism for
converting ceramides into sphingosine, S1P, and fatty acids
(Parveen et al., 2019). The sphingolipid metabolism pathway
proves indispensable in the metastatic process of lung cancer
(Pyne et al., 2018; Coant and Hannun, 2019); its potential as a
novel therapeutic target holds significant promise for augmenting
the efficacy of tumor treatments (Vijayan et al., 2019), and animal
experiments have demonstrated that NPC1L1 inhibition can
modulate sphingolipid metabolism (Yamanashi et al., 2020).
Although observational studies have indicated an association
between statin use and reduced plasma ceramide levels, there is
limited information on the impact on ceramidase levels.

In alignment with the findings of a previous study, our study
identifies increased plasma ceramide levels as a contributing factor
to heightened lung cancer risk among non-smokers, albeit with
nominal statistical significance (Alberg et al., 2013). Preclinical
studies have shown that exposure to cigarette smoke leads to
increased ceramide levels in the lung tissue of mice (Filosto et al.,
2011; Goldkorn et al., 2014; Lavrynenko et al., 2020); the
contribution of ceramides to the heightened risk of smoking-
related lung cancer necessitates prospective investigations for
conclusive evidence. Consistent with previous observational
studies, we found that PCSK9 inhibition reduced plasma
ceramide levels (Tarasov et al., 2014), and APOB inhibition had
the same effect. In addition, our results revealed that the inhibition
of LPL could increase plasma S1P levels. However, owing to the non-
convergence of the IVs for S1P in the lung cancer GWAS dataset, an
analysis of the association between S1P and lung cancer risk was
precluded. Notably, Alberg et al. (2013) observed an increased risk of
lung cancer with increased S1P levels.

The strength of our study resides in its augmentation of LLD
targets and lipid-lowering pathways. It amplifies the scrutiny of
distinct lung cancer subgroups. More importantly, we delve into the
mediating effect of sphingolipid metabolites, thus elucidating the
intricate mechanism underpinning how LLD influences lung cancer
risk. However, it is important to acknowledge the limitations of our

study. First, MR analyses could not be performed on two of the
target genes of LLD: ANGPTL3 and PPARA. This limitation arises
from the inability of IVs to establish positive control associations or
the unavailability of suitable genetic variants. Furthermore, given the
intricate pharmacological mechanisms underlying these drugs, our
MR analysis was unable to assess their potential off-target effects.
Second, IVs employed as proxies for lifetime exposure to LLD may
be limited in their ability to capture the effects of short-term drug
exposure. Additionally, our study is constrained to examining causal
directions and does not enable a precise estimation of dosage effects
or the cumulative impact of multiple medications. Third, although
the F-statistic for the genetic variants exceeds 10, indicating a low
probability of weak instrument bias, statistical power is constrained
due to the limited availability of only two SNPs as IVs for acidic and
neutral ceramidases (Larsson et al., 2019). Moreover, the relatively
small sample size utilized for the assessment of sphingolipids raises
concerns regarding potential selection bias. As a result, the
interpretation of our findings should be exercised with caution.
Fourth, despite sensitivity analyses not yielding statistically
significant outcomes, it remains essential to acknowledge the
potential impact of confounding variables and horizontal
pleiotropy, given the possibility of SNPs residing in a state of
weak linkage disequilibrium (r2 < 0.30). Fifth, the absence of
GWAS summary statistics for sphingolipids and lung cancer
across diverse populations precludes validation. MR studies
cannot substitute randomized controlled trials, and further
clinical and pharmacoepidemiological studies are essential for
triangulating. Sixth, the study population predominantly
comprised individuals of European ancestry, which may limit the
generalizability of our findings to other racial and ethnic groups.

5 Conclusion

We elucidated the intricate interplay between LLDs,
sphingolipid metabolites, and lung cancer risk. Associations of
APOB, APOC3, and HMGCR inhibition and the LPL agonist
with distinct lung cancer risks underscore the multifaceted nature

FIGURE 6
Overview of the direct and indirect effects of LLD on lung cancer risk, and the effects of neutral ceramidase. The effects of LLD on lung cancer risk
involving mediating effects of neutral ceramidase are highlighted in red. LDL, low-density lipoprotein; ApoB, apolipoprotein B; TG, triglycerides.
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of these relationships. The observed mediation effects highlight the
considerable influence of neutral ceramidase on lung cancer risk
reduction achieved by APOB and APOC3 inhibition.
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