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Graphene has been extensively explored to enhance functional andmechanical properties of metalmatrix nano-
composites for wide-range applications due to their superior mechanical, electrical and thermal properties. This
article discusses recent advances of key mechanisms, synthesis, manufacture, modelling and applications of
graphene metal matrix nanocomposites. The main strengthening mechanisms include load transfer, Orowan
cycle, thermal mismatch, and refinement strengthening. Synthesis technologies are discussed including some
conventional methods (such as liquidmetallurgy, powder metallurgy, thermal spraying and deposition technol-
ogy) and some advanced processing methods (such as molecular-level mixing and friction stir processing).
Analytical modelling (including phenomenological models, semi-empirical models, homogenization models,
and self-consistent model) and numerical simulations (including finite elements method, finite difference
method, and boundary element method) have been discussed for understanding the interface bonding and per-
formance characteristics between graphene and different metal matrices (Al, Cu, Mg, Ni). Key challenges in ap-
plying graphene as a reinforcing component for the metal matrix composites and the potential solutions as
well as prospectives of future development and opportunities are highlighted.
Copyright © 2020 Tianjin University. Publishing Service by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

To enhance specific strength of metal matrix composites (MMCs),
novel reinforcements such as whiskers, ceramic particles, and fibers
are often applied.1 TheseMMCs generally not only enhance the strength
of the matrix material, but also maintain its high toughness,2 which
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have found wide applications in aerospace, marine, military and other
fields including electronics and automotive industries.3,4 In general, car-
bonmaterial reinforced MMCs often show a better overall performance
and excellent enhancement effect over ceramic reinforcedMMCs owing
to their high electrical and thermal conductivity, excellent vibration
damping properties and self-lubricating properties.5,6 Early studies
showed that graphite and carbon fiber are effective reinforcement
phases to MMCs, not only improving their strength, but also maintain-
ing good electrical conductivity and small friction coefficient.7–9 How-
ever, the density of graphite is signficantly less than that of the metal
matrix, so graphite easily becomes agglomerated into graphite clusters,
thereby reducing themechanical properties of the metal matrix. Due to
the anisotropy of carbon fibers, the shear strength of the carbon fiber
based composite material along the fiber length direction is dramati-
cally different from that perpendicular to the fiber direction. These se-
verely limit the potential applications of graphite- and carbon fiber
reinforced metal matrix composites.10 One dimensional (1D) carbon
materials, such as carbon nanotubes (CNTs) have also been reported dif-
ficult to be reinforced into metal matrix nanocomposites (MMNCs).11

The main reasons are that small specific surface area of CNTs is not
easy to form a strong bonding interface with the metal matrix, and the
van der Waals force between CNTs is very large, which easily leads to
KeAi CommunicationsCo., Ltd. This is an open access article under the CCBY-NC-ND license
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Fig. 1. Distribution model of graphene in metal matrix: (a) horizontally; (b) obliquely;
(c) vertically.
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agglomeration,12 thus affecting themechanical properties and electrical
properties of composite materials.

Graphene as a two dimensional (2D) carbonmaterial with large sur-
face areas shows higher intimate contactwith themetalmatrix,13,14 and
also shows ultra-high elastic modulus, yield strength, good electrical
conductivity15 and thermal conductivity.16,17 Graphene reinforced
metal matrix composites (GRMMCs) show excellent thermal and me-
chanical properties, which make it suitable for wide-range application
prospects in the fields of catalysis, electronics, energy storage, conver-
sion, sensing and biotechnology.18–20 Currently the main challenges of
GRMMCs include21,22: (1) avoiding the damage of the network struc-
ture of graphene; (2) improving the degree of uniform dispersion of
graphene in the metal matrix; (3) strengthening the interface adhesion
and wettability between graphene and the metal matrix.

Nowadays, considerable efforts have been made for preparing high-
quality graphene in large quantities for research and potential applica-
tions. Since its discovery in 2004 using the micromechanical cleavage
method,15 various approaches have been utilised to prepare graphene
and graphene derivatives including graphene oxide (GO), reduced
graphene oxide (rGO) and functionalized graphene nanosheets. For ex-
ample, liquid-phase exfoliation (top-down)method can be used to syn-
thesize large quantities of single or multilayer graphene sheets with
small width, and involves the isolation of graphene layers from graphite
or graphite derivatives. Chemical vapor deposition (CVD), one of the
bottom-upmethods builds up the graphene sheet atom by atom to pro-
duce large size and high-quality nanosheets.23–25 There are other
methods such as epitaxial growth method,25,26 molecular beam
epitaxy,26 and most recently flash graphene.27 Graphene derivatives
are usually considered as an economical alternative than graphene for
large-scale production for fabricating nanocomposites. They have also
proven to be effective as fillers in nanocomposite materials.28,29

In literature, there are a few review papers about the research prog-
ress of the graphene reinforced metal matrix nanocomposites
(GRMMNCs). For example, Khorshid et al.30 reviewed the process of
preparing GRMMNCs using the powder metallurgy and various charac-
terization methods for studying GRMMNCs. Xavior et al.31 introduced
two types of methods for making composites of graphene and metal
matrix, including mechanical methods (ball milling, ultrasonic disper-
sion) and chemical method (electrodeposition), and highlighted prob-
lems of graphene agglomeration and weak composite interface in the
preparation of GRMMCs. Yang et al.32 reported influences of the interfa-
cial bonding between graphene and different metals on themechanical
properties, electrical properties and thermal properties, magnetic prop-
erties and friction properties of composite materials, for applications in
electronic equipment, aerospace, nuclear industry. However, most of
these reviews have neither covered in-depth discussions of strengthen-
ing mechanisms of GRMMNCs, nor comprehensively reviewed various
technologies for preparing the GRMMNCs. More importantly, the theo-
retical and analytical models used to predict the enhancement effect of
graphene have seldom been mentioned.

Herein, we will thoroughly discuss and compare the preparation
technologies of GRMMNCs, and focus on the key strengthening mecha-
nisms and principles. The dispersibility and interfacial wettability be-
tween graphene and different metal matrices (Al, Cu, Mg, Ni) are
evaluated and the cost effective performance is evaluated. Theoretical
and analytical modellingmethodologies for predicting the performance
of GRMMNCs are then discussed. Finally, the key issues of GRMMNCs
are summarized and their potential application prospects are
highlighted.

2. Design and enhancing mechanisms

Exploring the enhancement mechanisms of graphene in the metal
matrix is beneficial to the fundamental designs of MMCs, and can pro-
vide guidance on improving synthesis technology for achieving the
best reinforcement effect. Mathematical models can be developed to
190
represent the enhancement values brought by different enhancement
mechanisms due to the addition of the graphene. The micromechanics
model can be established to predict the local stress and strain fields at
different geometry, phases, and to predict the responses of non-
uniformity composite mechanical properties to the geometry and prop-
erties of the different phases.33

Several mechanisms have been proposed to explain the strengthen-
ing effects of graphene in MMCs: (1) Grain refinement in theMMCs via
pinning effect; (2) Solution strengthening of the interstitial carbon, ox-
ygen and nitrogen; (3) Dispersion strengthening of MMCs by the uni-
formly dispersed graphene; (4) Dislocation strengthening of in-situ
formed carbides within the matrix; and (5) Effective load transferring
function from the matrix to graphene. However, the exact strengthen-
ing mechanisms for a given composite is dependent on the nature of
its structures. Therefore, the key enhancementmechanisms of graphene
in the most commonly used metal substrates are load transfer,34

Orowan cycle,35 thermal mismatch mechanism36 and grain refining
strengthening,34 which will be discussed in detail in the following
sections.

2.1. Load transfer

In order to explain the strengthening effects of graphene inMMNCs,
three types of distributionmodels are proposed (Fig. 1). Thedistribution
of graphene in themetal matrix has a great influence on the load trans-
fer efficiency. Fig. 1 shows the distribution type of graphene in themetal
matrix. When the loading is along the direction as shown in Fig. 1, the
graphene in Fig. 1(a) is along the interface, and its contribution to the
load transfer is insignificant and even weakens the strength of the com-
posite material. This is because the surface energy between the
graphene planes is quite large, and more graphenes will be agglomer-
ated. They are prone to separation when subjected to tensile stress,
thus easily resulting in direct separation of the interface and no load
transfer. On the other hand, the interface bonding between graphene
and the metal matrix is inherently poor, and the composite interface
will be separated easily when subjected to a load. In Fig. 1(b), the
graphene has a certain inclination angle in the metal matrix, so when
the load is transferred to the composite interface, the graphene will be
rotated and stretched. This processwill provide an enhanced load trans-
fer efficiency. When graphene is vertically distributed in the metal ma-
trix (Fig. 1(c)), the graphene will be stretched under the load. For
composites, the contribution of load transfer is the largest under this
distribution condition.

Fig. 2 shows a schematic diagram of the load transfer mechanism.
The distribution type of graphene in the metal matrix is shown in
Figs. 2(b) and (c). The bond between graphene and thematrix is strong.
Fig. 2(a) shows that the interface is perfect and there are no cracks or
defects produced. When a load is applied along the 2D length direction
of reinforced graphene, the stress has been effectively transferred to the
matrix as shown in Fig. 2(b). The matrix metal is initially elongated and
deformed. Due to the strong interfacial adhesion between the graphene



Fig. 2. Schematic diagram of load transfer: (a) the initial composite material with randomly distributed graphene; (b) the matrix deforms and the graphene rotates after being stressed;
(c) the graphene is deformed and elongated; and (d) the graphene finally breaks.
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and metal matrix, the load has been effectively transferred, causing the
graphene to be elongated and deformed (Fig. 2c). Finally, a further in-
crease in the load will lead to the signficant deformation of graphene
structure or even break (Fig. 2d).

Yan's group reported that the value of the yield strength provided by
the load transfer mechanism in graphene-reinforced aluminum com-
posites follows the following formula37:

σ s ¼ σ0 þ kd−
1
2

� � V f sþ 4ð Þ
4

þ 1−V fð Þ
� �

ð1Þ

where σ0 and k are constants associated with the crystal type; d is the
matrix size;Vf is the graphene's volume fraction; and s is the aspect ratio
of the graphene. It can be seen that when the graphene's volume frac-
tion Vf is fixed, with the increase of values of s, the yield strength (σs) in-
creases. Using this model, the yield strength of graphene-Ni/Cu
composites was theoretically predicted, which is similar to the experi-
mental result.38 The effective transfer of load is the main reason for
Fig. 3. Schematic diagram of Orowan cycle strengthening: (a) initial dislocatio
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the enhanced strength. Addition of Ni nanoparticles not only improves
the dispersibility of graphene, but also enhances the wettability at the
interfaces and improves the interface bonding.38 However, this mecha-
nism does not take into account the negative effects of agglomeration
when the graphene content is large. It is only applicable for the ideal sit-
uationwhere graphene is homogeneously dispersed. The reinforcement
effect of large amount of graphene is much lower than the theoretical
calculation values. Theoretical studies39 showed that aspect ratio, dis-
persion, orientation direction of graphene and interfacial structures de-
termine the efficiency of load transfer effects within the GRMMNCs.
2.2. Orowan cycle

Fig. 3 shows a schematic illustration of Orowan cycle strengthening
mechanism, which is mainly due to the uniform dispersion of graphene
in the MMCs. When the composite material is plastically deformed, the
dislocationswill occur (Fig. 3a). Themovement of dislocations shown in
n; (b) dislocation hindered deformation; (c) dislocation loop formation.



W. Chen, T. Yang, L. Dong et al. Nanotechnology and Precision Engineering 3 (2020) 189–210
Fig. 3(b) is hindered when these dislocations are in contact with
graphene. Therefore, it is necessary to further increase the applied
stress, so that the dislocation will cut through or bypass the graphene
and then continue to move. There will be dislocation rings generated
surrounding the graphene as shown in Fig. 3(c). The dislocation harden-
ing mechanism can be expressed using Eq. (2).40

τ ¼ 0:84MGb
Lm−Sð Þ ð2Þ

where τ is the shear stress,M is the Taylor coefficient as a constant, G is
the shear modulus of the matrix, b is the Burgers vector, Lm is the dis-
tance between the reinforcements, and S is the average size of graphene.
Moreover, a smaller distance among the graphenewill result in a larger
shear strength of the composites.
2.3. Thermal mismatch mechanism

The coefficients of thermal expansion of graphene and metal sub-
strates usually differ by about an order of magnitude, and increase in
the thermal mismatch has been proposed as one of the enhancement
mechanism for the GRMMNCs. Arsenault and Fisher41 pointed out in
SiC/Al composite, the mismatch of thermal expansion of the reinforce-
ment and the substrate during thermal processing, such as sintering, an-
nealing heat treatment, etc. results in significant differences in the
volume expansion and contraction, thus increasing the defect levels.36

Generally speaking, the larger the interface areas are, the larger the dis-
location density is along the composite interface, and the more signifi-
cant this enhancement effect is. The dislocation density formula and
strength can be expressed usingformula (3) and formula (4).42
Table 1
Key technologies used to process the GRMMCs.45–59

Preparation
technology

Specific method

Liquid
metallurgy
(LM)

Arc melting, laser cladding, stirring casting

Thermal
spraying
(TS)

Plasma spraying, high velocity oxy fuel spraying, flame spraying, electric a
spraying, detonation flame spraying

Powder
metallurgy
(PM)

Hot press sintering, spark plasma sintering (SPS), microwave sintering, las
sintering, secondary deformation treatment (hot extrusion, hot forging, eq
channel angle processing)

Surface
deposition

Electrochemical deposition (ED), chemical vapor deposition (CVD)

Other
methods

Molecular level mixing (MLM), friction stir processing (FSP)
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ρ ¼ 10Aϵ
bt 1−Að Þ ð3Þ

where ρ is the dislocation density, A is the volume fraction of the
reinforcements, ϵ is the thermal strain, b is the Burgers vector,
and t is the size of the reinforcement. The enhancement strength
Δσ can be written as:

Δσ ¼ αμρ
1
2b ð4Þ

where α is a constant, and μ is the stiffnessmodulus of thematrix. From
formula (3), the more content of reinforcement, the larger the disloca-
tion density and the higher the theoretical strength. However, when
the size of graphene is too small and/or its content is too low, the ther-
mal mismatch mechanism becomes insignificant.43 The higher
graphene content will lead to an increased chance of graphene agglom-
eration, which will significantly reduce its strengthening effect. An in-
crease of graphene content will also increase the composites' defect
levels, decrease the material density, and reduce the strengthening
effect.

2.4. Grain refining strengthening

Large specific surface area of the graphene effectively prevents the
growth of metal matrix grains during sintering, which plays a critical
role in refining grains. Meanwhile, the interfaces between graphene
and the metal matrix hinder dislocation motion and crack propagation.
The effect of grain refinement can be quantified according to the Hall-
Petch formula34:

σ s ¼ σ0 þ kd
1
2 ð5Þ
Advantages Disadvantages Refs.

(1) Simple,
convenient and
practical;
(2) excellent
compactness;
(3) mass production
capability.

(1) Graphene has a low density and is easy to
float during the smelting process;
(2) graphene has a poor wetting effect with
the metal matrix, resulting in poor interface
bonding.

45–47

rc Graphene is evenly
distributed in the
feedstock.

(1) The sprayed layer is relatively thick,
which is not suitable for thin film composite
coating;
(2) the process is complicated;
(3) thickness uniformity is poor;
(4) empty drum;
(5) partially uncoated.

48–51

er
ual

(1) The process is
simple and easy to
operate;
(2) graphene has a
high degree of
dispersion.

(1) Structural integrity of graphene is easily
damaged, and degree of defects is large;
(2) density of composite materials is poor.

52–55

(1) Graphene has a
high quality;
(2) graphene has a
good dispersibility;
(3) composite
interface is well
bonded.

(1) The thickness of the composite coating
prepared by ED technology is limited;
(2) CVD technology will have carbon
precursor residues;
(3) coarse grains.

56, 57

(1) Graphene has a
high quality;
(2) composite
interface is well
bonded.

The process is complicated and not
convenient for mass production.

58, 59
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The above formula shows that as the grain size d decreases, the yield
strength of the material increases. Previous work showed that addition
of graphene toW70Cu30 composites can effectively refine the tungsten
grains.44 The tungsten grains (14.67 μm) with 1.0 wt% graphene were
significantly smaller than those without adding it (45.50 μm).

3. Processing technologies and graphene dispersing techniques

Preparation technologies for the GRMMNCs have signficant influ-
ences on the dispersion uniformity of graphene, interfacial adhesion
and the composites' structural integrity. The key technologies for pre-
paring GRMMNCs can be divided into chemical and physical methods
according to the presence or absence of chemical reactions in the
preparation process. Among these methods, the physical means in-
clude liquid metallurgy (LM), thermal spraying (TS), powder metal-
lurgy (PM), molecular-level mixing technology (MLM) and friction
stir processing (FSP); whereas the chemical means mainly include
chemical vapor deposition (CVD) and electrochemical deposition
(ED). Table 1 lists the key technologies of preparing GRMMNCs, in-
cluding their advantages and disadvantages. Table 2 summarizes
performances of different types of GRMMNCs after different pro-
cesses, as well as the comparison of physical properties with other
reinforcement/metal matrix composites.

3.1. Liquid metallurgy (LM)

Fig. 4 shows two commonly used LMprocesses, namely stirring cast-
ing technology and arc melting technology. To solve the uneven distri-
bution of graphene in the LM technology, the stirring casting
technology has been developed. During the process of adding graphene
into the molten metal, an additional stirring process is added so that
graphene can be uniformly distributed into the matrix.81 The process
is simple and easy to operate, suitable for mass production. However,
as shown in Fig. 4, because the density of graphene is much lower
than that of metal, it often floats on the upper part of the molten
metal, making an uneven distribution of graphene. The poor wettability
between graphene andmetal leads to a reduction in the contact surface
of themoltenmetal and graphene. At the same time, a very high heating
Table 2
Comparisons of physical and mechanical properties of GRMMCs with those from literature.10,6

Materials Optimized amount Preparation methods

Al-graphene 1060Al-1.5 wt% graphene Deformation-driven metallurgy (
Al-1.5 wt% graphene/Ni PM and hot extrusion
Al-0.5 wt% graphene Field activated and pressure assis
AL-0.34 wt% CNPs/0.16 wt% Cu PM

Al-CNTs Al-Cu-4 vol% CNTs PM
Al-5 vol% CNTs PM

Cu-graphene Cu-0.3 wt% graphene PM
Cu-0.3 wt% graphene PM
Cu-0.2 wt% GNPs SPS
Cu-CNPs-Cu Electrostatic self-assembly and el

plating
Cu-SiC Cu-20 vol% SiC High-pressure torsion

Cu-40 vol% SiC Sintering and forging
Cu-CNTs Cu-Ti-0.2 wt% CNTs PM

Cu-2.0 wt% CNTs Microwave sintering and rolling p
Mg-graphene Mg-1Al-1Sn-0.18 wt% GNPs PM

Mg-0.25 wt% GNPs DMD
Mg-CNTs Mg-4.0 vol% CNTs PM

AZ31-0.1 vol% CNTs Two-step dispersion
Mg-SiC Mg-1Al-2.4 wt% SiC SPS

Mg-1 vol% SiC Microwave sintering
WCu-graphene W80Cu20–0.45 wt% Cu @

graphene
SPS

Ti6AL4V-graphene Ti6AL4V-0.5 wt% graphene SPS
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temperature will increase the fabrication cost, and lead to the reaction
between the graphene and the matrix, as well as the severe oxidation
of matrix metal.

In addition, during the laser cladding process, excessively high tem-
peratures cause the formation of interface products such as carbide and
increase in thermal stress, which is the problem of limiting laser clad-
ding based LM technology at this stage.

3.2. Thermal spray (TS)

TS technology was initially used to prepare surface coatings on
the industrial components, for examples, antirust coatings on the
surface of automobile shells, and thermal softening prevention coat-
ings in the military industry, thermal barrier coatings and biological
coatings for aerospace and medical industries.82,83 The TS process
mainly includes sequenial depositions of coating materials through
droplet formation process84,85, droplet spraying process86, and atom-
izing droplet deposition and cooling process on the substrate.87

However, as shown in Fig. 5, the nozzle moving speed and the
size of the discharge port have significant influences on the coating
quality and thickness uniformity.50,51,88

Fig. 5 also shows the process of obtaining GRMMNCs using the TS
method. The graphene composite powders were melted to a molten
state in the combustion chamber, and then they were accelerated to a
high speed and deposited on the substrate plate. For example,
Derelizade et al.89 used a suspended high-speed oxygen fuel spraying
technology to deposit graphene nanoplates on stainless steel plates.
Compared with the uncoated substrate, the friction coefficient was re-
duced by 7 times.

3.3. Powder metallurgy (PM)

PM technology uses graphene powder and metal matrix powder as
raw materials for mixing, and then uses these mixtures for consolida-
tion treatment in order to obtain composite materials.90,91

The preparation process and problems of PM technology are shown
in Fig. 6. The PM process generally includes twomain procedures: pow-
der mixing and consolidation. These procedures are convenient and
0–80

Mechanical properties

Hardness/HV Tensile
strength/MPa

Yield
Strength/MPa

Elongation/% Refs.

DDM) – 497 – – 60
65.3 – 204.5 – 61

ted synthesis 49.5 131 – 42 62
– 180 – 22.5 63
193.18 601 450 – 64
137.1 – – 2.45 65
51 208 – 17.5 10
– 187 172 – 66
108.6 233 171 23 67

ectroless Cu – 274 195 – 68

119 – 142 7.9 69
175 – – – 70
– 407 – 9.7 71

rocess 372 344 234 8.2 72
– 269 208 18 73

202 122 14 74
70.3 265.5 – 6.3 75
88 322 270 16 76
56 262 147 – 77
43.2 203 157 7.6 78
238 – – – 79

472 – – – 80



Fig. 4. Schematic diagram and disadvantages of LM technology.

Fig. 5. Schematic diagram of TS process and existing problems.
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simple to operate, so they arewidely used in the preparation of compos-
ite materials. The powder mixing stage of PM technology has a signifi-
cant influence on the dispersion of the graphene. The powder is often
mixed by the ball milling method, in which a large deformation occurs
during the powder mixing process, and repeated welding and fracture
phenomena between the graphene and the metal matrix happen,
thereby improving the dispersibility of graphene. However, this process
will cause the fracture of graphene structures, thereby increasing the
degree of defects and reducing the strengthening effect. Whereas a sol-
vent mixing method uses organic solvents or deionized water to uni-
formly disperse the graphene inside the solvent under an ultrasonic
agitation. The composite powder could be obtained using a freeze-
drying method, and then the composite material is made using the
sintering. However, this method has the problems of poor bonding
strength between graphene andmetal structures, and graphene is easily
agglomerated during solvent removal process. At the same time, the
composite materials prepared using PM technology inevitably have
macro-defects such as pores, which reduce the density of the composite
materials, thereby affecting the strength, electrical conductivity, and
thermal conductivity of the GRMMNCs.

The sintering process can be divided into liquid phase sintering and
solid phase sintering. The microstructure obtained by liquid phase
sintering is denser and the carbon nanomaterials are easily dispersed.
However, the high sintering temperature will result in coarsening of
Fig. 6. Schematic diagram of PM p
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the matrix microstructure and the decrease of mechanical properties.
Although the solid phase sintering can avoid the coarsening of the mi-
crostructure, the defect degree of the sintered body is quite high.

In recent years,many advanced sintering processes have been devel-
oped, which have the characteristics of low sintering temperature and
short time, such as spark plasma sintering (SPS), laser sintering, andmi-
crowave sintering.92–95 These newly developed sintering processes can
effectively avoid the shortcomings caused by high temperature and long
sintering durations in the traditional PM method. In some cases,
sintering is not the final process, and further deformation processing
is applied to improve mechanical properties of the composites (Fig. 6).
These include hot processing and cold processing techniques such as
hot/cold extrusion,52 hot/cold forging,53 hot/cold rolling96 and equal
channel angle processing.97

For example, Kady et al.98 prepared Cu/WC-TiC-Co/graphene
nanoplates (GNPs) composite using the PM method. When the con-
tent of GNPs was 0.25 wt%, the relative density of the composite
reached its maximum value. Increasing the content of GNPs will
lead to the agglomeration of graphene and generate a lot of pores.
Sengupta et al.30 used polyvinyl alcohol (PVA) as a dispersant to
disperse graphene oxide (GO) and Fe powders uniformly before
using the laser sintering technology.99 The schematic diagram of
this process is shown in Fig. 7(a). The PVA is evaporated from the
base metal through the liquid phase sintering process, and the
rocess and existing problems.
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alignment of GO along the vertical direction of the cross-section is
shown in Fig. 7(b).

3.4. Surface coating deposition

(1) Electrochemical deposition (ED)

In order to improve thewear resistance and decrease the friction co-
efficient of many components involved in contacts, friction and wear
processes,100,101 graphene is added to the surfaces of these components,
which can increase the hardness and at the same time can effectively re-
duce wear due to its self-lubricating performance, thus increasing the
service life of the parts. This could bemore effective thanmany conven-
tional methods such as surface lubricants. However, much research is
needed to effectively apply graphene as the effective reinforcement
phase of the metal matrix.102,103 The ED technology can deposit a
graphene-based composite film on the surface of the substrate to im-
prove the wear resistance of the material.104,105 During the process,
graphene is combined uniformly with the metal ions in the electrolytes
bymechanical stirring or addition of surfactant, and then the composite
coating is deposited on the surface of the cathode substrate by pulse
current or direct currentmethods.106–108 Finally, the compositematerial
is obtained by sintering, and the preparation process is shown in Fig. 8
(a). Recently, pulsed reverse current has been used as an excitation
source, which can improve the dispersibility of graphene and improve
interfacial bonding of graphene with metal matrix (Fig. 8b and c).109

In Ref. 110, the GNPs/Cu composites prepared by ED and atmospheric
protection sintering technology have shown significantly improved
dispersibility of graphene and enhanced interfacial bonding.

(2) Chemical vapor deposition (CVD)

CVD is a commonly used method for large-scale production of
graphene on metal substrates.111,112. Since graphene is a two-
dimensional material, during CVD process, the spherical metal matrix
powder is firstly subjected to treatments such as ball milling to make
it into a flake powder. Thenwith the help of different carbon precursors,
graphene can be formed on the substrate surface under either thermal
heating or adding the metal catalysts (Fig. 9). Microwave,113,114

magnetocaloric effect115 and arc discharge116 are often applied to gen-
erate plasma sources in the deposition chamber in order to promote
the formation of high quality graphene in the CVD (or plasma enhanced
chemical vapor deposition (PECVD)) processes. GRMMCs117 can be ob-
tained by in-situ preparation of graphene onmetal powder or nano po-
rous metal by CVD. Graphene has a good binding ability with metal
matrix,118 and can achieve uniform dispersion.119 However, as shown
Fig. 7. (a) Schematic diagram of the GO and Fe powder mixed coating on the surface of the st
Reproduced from Ref.99
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in Fig. 9, the surface defects of graphene are often increased due to the
residual of carbon precursor in the CVD technology.111 At the same
time, the CVD process is generally carried out at a high temperature,
which will cause the metal matrix crystal grains to increase signifi-
cantly, and thus deteriorate the performance of the composite material.

Fig. 10 shows that Ni nanoparticles are in-situ combined with
graphene using CVD method in order to prevent agglomeration of the
graphene. In the composites, Ni nanoparticles are uniformly distributed
on the surface of graphene.120 In Ref.121, the radio frequency plasmawas
used to enhance the CVD process, and the graphene layers are vertically
produced on a 3D foam copper substrate,121 which can be effectively
used as a battery electrodematerial. Chen et al.122 applied the CVD tech-
nology to in-situ produce graphene on the surface of copper powders,
thus forming copper-based composite materials.

3.5. Other methods

In recent years, molecular-level mixing (MLM) technology has been
widely used in CNTs reinforced MMCs.123 Using the MLM process, the
defects of the reinforced phase are signficantly reduced,which is helpful
to synthesize high quality composite materials, such as GRMMNCs.
Fig. 11 schematically illustrate the MLM process,57 which include:
(1) uniform dispersion of GO and metal ions in an aqueous solvent
through chemical reactions to obtain composite powders; (2) reduction
treatment to obtain rGO/metal composite powders; (3) consolidation
treatment to obtain the final composites. For example, using the MLM
technology, the rGO can be uniformly dispersed and form a strong inter-
face bond through the oxygen-assisted bonds at the composite inter-
faces of rGO and Cu, thus achieving a signficant enhancement effect.124

Friction stir processing (FSP) uses the heat generated by friction to
softenmetal and increasemechanical agitation to disperse the graphene
into themetalmatrix.125,126 Fig. 12(a) shows a schematic diagramof the
friction agitation process.126 It is reported that the GNPs/Al6061 com-
posite prepared by amulti-channel FSPwas superior to the surfacemor-
phology of a single-channel FSP,127 as shown in Fig. 12(b) and (c).

4. Different types of graphene metal matrix composites

In recent years, researchers have synthesized GRMMNCs based on
the differentmetalmatrices includingAl, Cu,Mg, Ni, etc.128–131 Different
metal substrates will be combined with graphene with two variations:
(1) the interactions between the above-mentioned interfaces are differ-
ent; and (2) the interface lattice mis-matching is different. According to
different interactions between graphene and themetalmatrix (Table 3),
there are two types of short-distance chemical adsorption and long-
distance physical adsorption interactions. Table 3 lists the equilibrium
eel plate; (b) schematic diagram of the regular arrangement of GO during laser sintering.



Fig. 8. (a) Schematic diagram of the preparation of GRMMNCs by ED and sintering; (b) schematic diagram of DC deposition (Reproduced from Ref.109); (c) schematic diagram of pulse
reverse deposition (Reproduced from Ref.109).
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atomic distances between the graphene and different metal substrates.
For metals such as Cu, Al, and Ag, their equilibrium atomic distances
with graphene are between 0.33 and 0.35 nm,132 which are basically
the same as the graphene layer spacing of 0.34 nm.133 Therefore, the
bonds between these metals and graphene are van der Waals forces
which are very weak. However, as listed in Table 3, the equilibrium
atomic distances between metals such as Ni or Ti and graphene are be-
tween 0.20 and 0.21 nm,132,134,135 and the bonding is chemical bond
which is very strong.
Fig. 9. Schematic diagram and disa
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In the following sections, we will discuss the interactions and lattice
matching degree of these metal-graphene interfaces with Al, Cu, Mg, Ni
and other metals as the matrix.

4.1. Al-matrix composites

The advances of aluminum-based composite materials such as low
density and good wear resistance make them having suitable applica-
tions in the automotive and aerospace fields.136 However, there are
dvantages of CVD technology.



Fig. 10. Schematic diagram of preparation process for in-situ CVD, ball milling and hot pressing sintering of Ni@GNPs/Al composite block. Reproduced from Ref.120
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requirements for these automotive and aerospace materials to be light-
weight with good mechanical properties. The enhancement of tradi-
tional ceramic particles makes the aluminum matrix composites with
much increased weight.60,137 Graphene has small density, large surface
area, excellent thermal conductivity, electrical conductivity and wear
resistance, so it is regarded as an excellent reinforcement of
aluminum-based compositematerials.138 It not only reduces theweight
of the aluminum-based composite material, but also improves the me-
chanical properties of the aluminum-based composite materials. At
the same time, its self-lubricating properties greatly improve the wear
resistance of aluminum-based composite materials, which is un-
matched by other reinforcing materials.139

As shown in Table 3, the equilibrium atomic distance between the
graphene and Al matrix is 0.34 nm, so the interaction is quite weak at
the physical adsorption interface. There are high degrees of lattice mis-
match between the lattice of graphene and the lattice of the Al matrix,
so a periodic lattice matching will occur and cause the generation of
Moiré pattern, which leads to buckling of graphene.132
Fig. 11. Schematic diagram of MLM process for preparing
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Affected by the van der Waals forces, the graphene layers are
often agglomerated and form thick sheets, which generate a large
number of defects at their bonding interfaces, thus the strength of
composite is reduced.140,141 Therefore, an effective increase in graphene
dispersibility inside a metal matrix such as aluminum will surely
enhance the strengthening effect of graphene in the GRMMNCs.10,142

The composite interface without a strong interfacial reaction is only
combined by physical bonds (for examples, van der Waals force and
hydrogen bond) rather than chemical bonds (e.g., metal bond, ionic
bond, and covalent bond). Fig. 13(a) shows different types of bond-
ing between graphene and aluminum substrates. Among them, the
composite interface is only bonded by van der Waals force, the Al
ions are bonded by metal bonds, and the C atoms are bonded by
covalent bonds. There are only weak van der Waals force between
the graphene and Al matrix. On the other hand, wettability is also
important for the adhesion of the composite interface. Increasing
the wettability can increase the bonding surface between the
graphene and Al, thereby improving the interface bonding.
rGO/Cu composite materials. Reproduced from Ref.58



Fig. 12. (a) FSP process diagram; (b) multi-channel surface (Reproduced from ref. 127); (c) single channel surface (Reproduced from ref.127).

Table 3
The equilibrium atomic distances between graphene and different metal substrates.

Types Substrate Equilibrium atomic distances (nm)

Physisorbed metals Cu 0.32–0.33
Al 0.34
Ag 0.33
Au 0.33

Chemisorbed metals Ni 0.20–0.32
Ti 0.21
Re 0.21
Co 0.20–0.32
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As explained in the above section, the ball milling process is one of
the most commonly used methods for uniform mixing of powder, but
the large deformation of the materials during the ball milling process
will damage the structure of graphene and thus reduce the enhance-
ment effect.72

In order to achieve a uniform dispersion of graphene in the Almatrix
and improve the wettability between the graphene and Al, the existing
solution is to modify the graphene surface, reduce the surface energy of
Fig. 13. (a) Schematic diagram of the graphene/Al bonding method (Reproduced from
Ref.39); (b) graphite/Al is a wetting interface (Reproduced from Ref.144); (c) Cu-
modified graphite/Al wetting the surface (Reproduced from Ref.144).
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graphene, and improve the wetting between graphene and Al. For ex-
ample, Ju et al.143 used a water suspension mixing method to load
Mg2+ ions on the surface of graphene, and then ball-milled the mixed
powders. This is followed by an SPS process to form graphene/Al com-
posites. The Mg2+ ions can reduce the surface energy of the graphene,
and form a bridging effect connecting graphene and Al matrix, thus im-
proving the composite's yield strength and tensile strength. Studies
have shown that covering the surface of graphene with Cu can effec-
tively improve the wettability between graphene and Al.144 As shown
in Fig. 13(b), the wetting angle between the unmodified graphite
plate and Al is 140 °C, while the wetting angle at the interface between
the modified graphite platelet and Al is decreased significantly to 55 °C
(Fig. 13(c)).39 This can improve the bonding strength of the Al matrix
and the graphene interface.

Sun et al.145 introduced Cu2+ ions into the Al-GO aqueous suspen-
sion, and then the positively charged Cu2+ ions and negatively charged
GO were combined by electrostatic adsorption. The Cu2+ ions help to
reduce the GO into rGOs. The composite materials were finally obtained
by vacuum hot pressing sintering of Cu-doped rGO/Al composites. Dop-
ingwith 3wt% Cu2+ resulted in the best reduction effect of the GOs, and
the microhardness of the obtained composites are 121% higher than
that of Al substrate, and the compressive strength are 121% higher
than that of Al. However, with a further increase of the doping contents
of Cu2+, the dispersibility, hardness and compressive strength are all
decreased due to the significant agglomeration effects.

Ball milling process is also used to optimize the powder mixing pro-
cess, a homogeneous mixing of graphene and Al powders can be
achieved using a low-energy ball milling while ensuring the structural
integrity of graphene.146 It should be noted that the interface between
graphene and Al is prone to interface reactions and formation of Al4C3
intermetallic compounds,147 which are unfavorable for Al metal matrix
composites.

4AL þ 3C⇋AL4C3 ð6Þ

In addition to themechanical properties enhancement of the Al ma-
trix, the addition of graphene can also improve the friction properties.
For example, Zeng et al.148 reported that composite materials (rGO/
SiC/Al\\Si) were prepared using hybrid reinforcement materials
through PM technology. The friction coefficient of the composite mate-
rial is significantly lower than that of the Al\\Si matrix. This shows that
the self-lubricity of graphene can improve the wear resistance and re-
duce the friction.149
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4.2. Cu-matrix composites

The development of copper-based composites is mainly driven by
the requirement for improving low strength of pure copper metals. Ad-
ditions of various reinforcements nanomaterials will increase the
strength but often their conductivity values are decreased, which is un-
acceptable for many practical applications.150,151 Graphene is regarded
as the best material to simultaneously improve these material
properties.152,153 However, the interface wettability between Cu and
graphene is generally poor, and their interface bonds are weak.58,154 It
is generally difficult to disperse graphene uniformly inside the Cu
matrix.155 Similar to that in the aluminum-based composite materials,
the interaction between graphene and Cu is still weak and the lattice
mismatch is large. The difference is that the Cu matrix does not chemi-
cally react with graphene to form metal carbides. It was reported that
the graphene/Cu composite interface relies on oxygen atoms as
Fig. 14. (a) Transmission electronmicroscope (TEM) image of graphene/Cu composite interface
B in(a); (d) EDS diagram of area C in (a); (e) schematic diagram of GNP/Cu interface bonding
generated.
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intermediate atoms to connect graphene andCumatrix,156 as illustrated
in Fig. 14.

The problems for the graphene/Cu composites are basically the same
as those for the graphene/Al composites. The only difference is that
graphene and Cu matrix are not prone to severe chemical reactions,
e.g., without formation of a lot of metal carbides. Generally speaking,
the presence of metal carbides will affect the enhancement effect of
graphene on the strength of the Cu matrix, while limiting the electron
transfer rate and lowering the electrical conductivity and thermal con-
ductivity. The methods for solving the problems including poor
graphene dispersibility and weak interface bonding of graphene in the
Cu matrix, and poor interface wettability are basically similar to those
for the graphene/Al composites. These include graphene modified by
loading metal particles, improving the preparation processes and
using new technological methods such as molecular level mixing
(MLM). For example, Zhang et al.129 prepared GNPs/Cu composite
; (b) energydispersive spectrometer (EDS) diagramof area A in(a); (c) EDS diagramof area
. Reproduced from Ref.156. The TEM and EDS diagrams proved that the C\\O\\Cu bond is
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powders using MLM technology with NaOH solution, and then synthe-
sized composites using the SPS method.

Molecular dynamics simulation has been applied to study the
graphene/Cu composites,157 and the results show that graphene can im-
prove both the elastic modulus and yield strength of the composite.
Simulations results show that the addition of graphene can significantly
inhibit the expansion of cracks. Additionally, the plastic deformation of
the composites was mainly shown as sliding along the surface of
graphene, indicating that the interfacial properties of graphene and Cu
have a dramatic influences on the overall performance of the composite.
For example, our study shows that the use of rare earth element of ce-
rium andmetallic element of Ag tomodify rGO and the use of SPS tech-
nology to obtain rGO/Cu composites result in a lower tensile strength
than that of pure copper.158 The reason for this result is largely due to
the low interface connectivity between the graphene and the matrix,
which is prone to cracking and failure during the stretching process.

4.3. Mg-matrix composites

Magnesium alloys have the advantages of low density and good
damping performance,159 but they have some disadvantages such as
low strength and hardness, which seriously restrict further
applications.160 Current key research is to apply reinforcing materials
to improve the mechanical properties of magnesium alloys.161 The Mg
matrix has a large latticemismatchwith graphene. The chemical nature
of Mg is quite active, therefore, MgOwill be formed during the prepara-
tion process, which can improve the degree of lattice matching. For
Fig. 15. (a) Inverse Fourier image of the high-resolution transmission electron microscope (HR
GNS/MgO interface. (b) Inverse Fourier image of the HRTEM of GO/α-Mg interface. It can be see
parallel. Therefore, it has a high degree of lattic matching, and MgO and α-Mg are tightly bou
Ref.168
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example, Chen et al.162 synthesized 1.2 vol% graphene nanosheets
(GNS) reinforced Mg matrix composites using liquid ultrasonic
treatment and solid-state stirring methods, and fabricated nano-
materials (CNTs, SiC, SiO2 and Al2O3) reinforced Mg matrix compos-
ite materials using the same method. Among them, the GNS/Mg
composite (66 kg/mm2) has shown the highest microhardness, and
the graphene and Mg substrates can be properly adjusted by opti-
mizing the MgO at the interfaces, as shown in Fig. 15.

Adding graphene into theMgmatrix has shown a hardness enhance-
ment effect. However, serious agglomeration of graphene and the poor
interface structures is often the problem for the poor enhancement
effect.163,164 The current solution ismainly focused on optimizing existing
processes or adopting new preparation processes. For example, after the
conventional composite process (e.g., melting, PM, vacuum hot pressing,
etc.), additional secondary processes (e.g., hot extrusion, hot rolling, etc.)
are often used, and the yield strength and tensile strength of the obtained
graphene/Mg composite material have been improved.165,166 The wear
rates of graphene/Mg composites are also found to be significantly
lower than those of magnesium alloys without graphene, mainly due to
the good self-lubrication effect of the graphene.167

4.4. Ni-matrix composites

Due to their high strength and hardness and good wear resistance,
Ni-based composite materials are suitable for solid lubricating
materials.169 Due to its self-lubricating properties, graphene has been
added into Ni matrix in order to improve mechanical properties such
TEM) of GNS/MgO interface, which shows that there is a high density of dislocations at the
n that the (111) crystal plane ofMgO and the (0002) crystal plane ofα-Mg are arranged in
nd. (c) Schematic diagram of the combined GNS/MgO/α-Mg interface. Reproduced from
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as strength and hardness, and corrosion resistance and wear
resistance.170 For example, Yasin et al.171 studied the enhancement
of mechanical properties and corrosion resistance performance of
nanocomposite coatings of Ni/graphene nanocomposite coating.
Hassannejad et al.172 proposed an approach for deposition of nickel–
graphene nanocomposite coating on copper substrates and reported
that with the presence of graphene in the nickel coating, the wear rate
was dramatically decreased.

4.5. Other types of metal-matrix composites

Ti matrix has a significant interaction with graphene, and the lattice
mismatch between Ti and graphene is much larger than that between
Ni matrix and graphene.39 There is not only van der Waals force bond-
ing but also ionic bonding between the graphene and Ti. This is because
the outer d-electron orbit of Ti is not fully filled and thus ionic bonds are
formed between Ti and the graphene's dangling carbon atoms, resulting
in a relatively strong composite interface.39 In previous studies, Dong
et al.173 confirmed that TiC is formed between rGO and Ti matrix at
1000 °C, which will increase the tensile strength, yield strength and
Fig. 16. (a) Engineering stress-strain curve of the compositematerial obtained after sintering. (b
stress-strain curve shows that the yield strength and tensile strength of GNPs/Ti-6Al-4V are high
6Al-4V. (e), (f) and (g) GNPs and Ti-6Al-4V interface bonding morphology. The morphology re
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hardness of the composite. Recently, we observed three effective inter-
facial microstructures in GNPs/Ti-6Al-4 V composites and GNPs/CT20
composites, i.e. GNPs-Ti matrix, TiC-GNPs and TiC-Ti matrix, as shown
in Fig. 16, leading to synergetic enhancement of strength and ductility
of Ti matrix composites.174,175

Studies also show that the addition of graphene reduces the friction
coefficient and wear rate of TiAl substrates,176,177 which can be attrib-
uted to the self-lubricity of the graphene and the improvement of the
hardness of Ti-based composite materials due to the addition of
graphene.

The addition of graphene tometal substrates such as tungsten alloys
and stainless steels can also enhance the strengthening effect of
graphene. For example, we have added graphene into W70Cu30 com-
posites and found that because graphene refines the grains of thematrix
and hinders the movement of dislocations, the hardness and yield
strength of the matrix have been significantly improved.44 Mandal
et al.178 added graphene to 316L stainless steel and the hardness of
the composite material was significantly improved, which is attributed
to the good load transfer and thermal mismatch mechanism between
the graphene and stainless steel.179
) The stress-strain curve of the compositematerial obtained after sintering and rolling. The
er. (c), (d) Schematic diagrams of the interface bondingmechanismbetweenGNPs and Ti-
sults show the formation of TiC. Reproduced from Ref.174
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5. Modelling and computational mechanics of graphene composites

Modelling is popularly used to explore the enhancing mechanisms
and understand the behaviour of materials, which then facilitates the
design of structures or constructions. The model is able to predict the
material or structure performance against external stimulants even be-
fore their manufacturing and applications.180,181

Over the years, there have been a number of analytical models to
produce appropriate predictions of the properties of reinforced compos-
ites. Analytical techniques could be divided into four categories: phe-
nomenological models (e.g. rule of mixture (ROM)182; Reuss
model183), semi-empirical models (e.g. modified rule of mixture
(MROM)180; Halpin–Tsaimodel184; Chamismodel185), homogenization
models (e.g. Mori–Tanaka model186), and self-consistent model187.

In practice, to determine upper and lower bounds of properties, two
distinct situations where the nanocomposites are considered to have
uniform strain and uniform stress are investigated. In the case of uni-
form strain, it is found that Young's modulus Ec of the composites is
given by the rule of mixtures.188

Ec ¼ vgEeff þ vmEm ð7Þ

Whereas in the case of uniform stress, the Young's modulus of the
composite is given by

Ec ¼ EeffEm
vmEeff þ vgEm

ð8Þ

where Eeff is the Young's modulus of the multilayer graphene filler that
depends only upon its structure;26,188 Em is the Young's modulus of the
matrix, and vg and vm are the volume fraction of graphene reinforce-
ments and matrix, respectively.

Taking into account the orientation of the reinforcing particles and
their finite length, we can obtain:

Ec ¼ KηvfEeff þ vmEm ð9Þ

where η is length efficiency factor; K is Krenchel factor189, and for
randomly-oriented nanoplatelets, K = 8/15.190

Halpin and Tsai proposed a semi-empirical formula based upon the
self-consistent micromechanics method of Hill that enabled them to
predict the elastic behaviour of a composite for a variety of reinforce-
ment geometries.184,191 For the elastic modulus of random short fiber
reinforced composites,192,193 by taking into account the distribution of
graphene and gravity ratio, we can obtain:

Ec ¼ 3=8� 1þ 2=3ηLpf
� �

= 1−ηLf
� �þ 5=8� 1þ 2ηTf

� �
= 1−ηLf
� �� 	

Em
ð10Þ

E∥ ¼ 1þ 2=3ηLpf
� �

= 1−ηLf
� �

Em ð11Þ

in which Ec is the elastic modulus; ηL = (Eg/Em − 1)/(Eg/Em + 2/3p);
ηT = (Eg/Em − 1)/(Eg/Em + 2); subscripts m, g, c and II represent the
matrix, graphene, random graphene distribution and uniaxial orienta-
tion of the composite material, respectively; p and f are graphene diam-
eter ratio and volume fraction, respectively.

The behaviour of composites could be modelled by using a
macromechanical approach based on introducing the experimentally
determined properties of composite material into an analytical tool,
e.g. finite element analysis (FEA). Or this can be realized by using a
micromechanical approachwhich considers the properties of each indi-
vidual constituent, thus allowing determination of the composite prop-
erties for any volume fraction or any orientation prior to manufacturing
of the composite itself and without the cost of experimental testing of
the materials. It can, therefore, assist in designing the composite mate-
rials as well as the structures comprising of them.194,195
203
Multiscale modelling of composites refers to a bottom-upmodelling
strategy of simulating their behaviour through multiple time and/or
length scale. The strategy begins with the in situ measurement of the
constituent mechanical properties at the microscale level to build up a
ladder of simulations, which take into account the relevant deformation
and failure mechanisms at different length scales all the way to global/
structural scale.196,197Multiscalemodelling approaches could be further
classified into a number of micromechanics models, ranging from sim-
ple fully analytical equations to a numerical FE-based approach to pro-
vide the global FE model with the effective behaviour of composites.198

Numerical modelling is a reliable tool, but unlike analytical models,
it is time-consuming due to the definition of the geometrical
dimensions.198,199 There are various numerical techniques for solving
practical engineering problems with a reasonable degree of accuracy
such as the finite elements method (FEM), the finite difference method
(FDM), and the boundary elementmethod (BEM).180 However, numer-
ical FEM modelling is the most widely used for investigating and
predicting the effective properties of composites.198,200,201

For example, Song et al.202 used FEM to establish three-dimensional
models of two different lateral scales (0.23 μm and 1.1 μm) when ex-
ploring graphene aluminum matrix composites. The results show that
the engineering stress-strain curve predicted by the numerical simula-
tion is basically consistent with the experimental measurement, as
shown in Fig. 17(a) and (b). Themorphology of the tensile fracture pre-
dicted by observation is in a good agreement with the experimental
one, as shown in Fig. 17(c) and (d).
6. Conclusion and perspective

6.1. Current research trends and problems with graphene enhanced MMNCs

6.1.1. Applications and industrial relevance of GRMMNCs
Graphene market size is growing steadily in recent years. It is ex-

pected that among other types of graphene, graphene nanoplatelets
will dominate the market share of graphene derivatives in the next
5–10 years due to their immense potentials as reinforcement materials
for the development of lightweight and cost-effective composites with
superior mechanical, thermal, and electrical properties.203 Even though
no commercial applications or commercial products based on graphene
nanocomposites have been reported,204 there are several potential ap-
plications including engineering, electronics, medicine, energy, indus-
trial, household design etc.205 For example, Cu-graphene composite
films could be used for electro-friction applications such as brushes in
generators and motors or heat sink structures for electronic devices.204

Graphene–metal composites (e.g. those composites based on Fe\\Ni,
Ag, Au, Pt Pb, and Cd) are often used as catalysts, photo-catalysts, energy
storage and transformation materials and biosensors.206

Until now a significant focus has been devoted to commercially pro-
ducing thermoplastic and thermosetting systems, however, GRMMCs
represent a promising materials sector.

6.1.2. GRMMNCs in aeronautical and automotive structures
Aviation and aerospace industry is the foremost adopters of ad-

vanced composite materials. With the exploitation of GRMMCs and
their potential uses, future integrated approaches could be realised for
structural aircraft components, e.g. thermoelectrical, lightning strike
protection, fire and water barrier, and de-icing systems to keep aircraft
parts ice-free, without affecting aerodynamic properties. Many projects
are already in development207,208 to increase the technology readiness
level (TRL) of graphene-based systems and to reach highly integrated
components. With the increasing number of automotive-grade
graphene suppliers, many projects and companies in the automotive
sector are also seeking to enhance their TRLs and increase their adoption
of graphene-based components in new applications including electron-
ics, thermal management and structural uses.



Fig. 17. (a) 0.23 μm rGO/Al simulation and experimental stress-strain curve; (b) 1.1 μm rGO/Al simulation and experimental stress-strain curve; (c) 0.23 μm rGO/Al simulation and
experimental fracture morphology; (d) 1.1 μm rGO/Al simulation and experimental fracture morphology. Reproduced from Ref.202
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6.1.3. GRMMNCs applications in construction
In the construction domain, graphene is generally viewed as

next-generation materials. Graphene could be used in construction as
a coating for steel or could be incorporated into traditional concrete pro-
duction to substantially improve its characteristics. Althoughmany con-
structional and functional benefits could be achieved through the
addition of graphene to the suitable composite systems, e.g. enhanced
fracture toughness, increased strength and stiffness, superior erosion
resistance, the incorporation and processing techniques for these mate-
rials have not yet reached the same level of maturity. However, the near
future looks for their promising applications.
6.2. The problem of graphene-enhanced MMNCs

Current research shows that graphenehas the followingmajor prob-
lems when enhancing MMNCs: (1) severe agglomeration of graphene,
(2) weak interfacial bonding and (3) poor structural integrity of
graphene.

A large number of studies have shown that during the recombina-
tion of graphene and metal matrix,34,66,209 the phenomenon of its ag-
glomeration is quite serious. The reason for this is that the surface
energy of graphene is very large, causing the graphene sheets to sponta-
neously agglomerate by van der Waals forces to lose its inherent prop-
erties, which in turn deteriorates the mechanical properties and
electrical properties of the metal matrix.

Wettability is a critical issue when the molten liquid is generated
during the compounding process, which determines the strength of
the composite interface. The wetting effect has a crucial influence on
the performance of the composite material during the fabrication
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process. For a liquid on the surface of an ideal solid, the relationship be-
tween the wetting angle and the surface tension can be expressed by
Young's equation.210

γSV ¼ γSL þ γLV cos θ ð12Þ

cos θ ¼ γSV−γSLð Þ=γLV ð13Þ

where θ is thewetting angle; γSV, γSL and γLV are the surface tensions of
solid–vapor, solid–liquid and liquid–vapor, respectively. The smaller the
wetting angle, the better the wettability between the droplet and the
solid.When γSV> γSL, it indicates that the droplet can bewetted. Specif-
ically, when cos θ=1, the droplets have the best wetting effect and can
be completely wetted. When cos θ >0, the wetting partially occurs.
When cos θ <0, the surface is not wetted. The research shows that the
wettability of graphite and molten metal is very poor.211 For example,
the wetting angle of graphite and Al is 140°—160°, that is, cos θ <0
shows no wetting.144

High temperature and high pressure are generally the critical condi-
tions for the preparation of composite materials, however, during these
processes, the inherent structure of graphene could be seriously dam-
aged, thus reducing their reinforcement effect.212

6.3. General methodologies to solve the problems of graphene
enhanced MMNCs

For the above problems, researchers have developed a large number
of solutions. It can be divided into process optimization method
and graphene surface modification. These methods have improved
the problems of GRMMNCs to a large extent and improved the
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enhancement effect of graphene, but the conventional methods still
cannot completely solve the existing problems. The following sections
will introduce the solutions and their pros and cons.

6.3.1. Process optimization
The process optimization includes applying somemodfied methods

in dispersion methods such as ball milling dispersion and ultrasonic
dispersion.213,214 Although the ball milling method can achieve the dis-
persion effect in the process, due to the large deformation, graphene
will be destroyed, and the metal matrix is often oxidized, thus affecting
the strengthening effect.215 Therefore, in the process of ball milling, the
precise control of ball milling time is helpful to control the reinforcing
phase and avoid a lot of defects.209 Alcohol or protective gas can be
added to prevent oxidation during ball milling. Dispersion can be done
in anhydrous ethanol under the action of ultrasonic, and the subsequent
mixing and drying with metal matrix powder can obtain graphene/
metal matrix composite powders.216

6.3.2. Surface modification of graphene
The surface modification of graphene includes metal modified

graphene, rare earth modified graphene and other modifications (for
example, surface functional groups can be obtained by using the deriv-
ative GO)120.

(1) Metal elements can be added to graphene to form (metal@
graphene) powder, which is then mixed with the base metal powder.
Because the addition of metal elements can effectively reduce the sur-
face activity of graphene and inhibit the agglomeration of graphene,
themetal elements can effectively combinewith the basemetal. The in-
terface between graphene and the base metal can be well realised by
using the intermediatemetal elements as the bridge.120,217 For example,
Our previous research218 showed that coating a layer of Cu on the sur-
face of graphene can be used to reinforce WCu-based composites. Re-
sults showed that when the graphene content obtained by SPS
infiltration sintering was 0.8 wt%, the material showed high hardness
and high strength while maintaining good electrical and thermal con-
ductivity. Reza et al.219 used Ag nanoparticles to modify the rGO, and
the Ag/rGO powder and Cu powder were mixed by ball milling and
SPS compaction. Their results showed that when the content of
graphene was 1.6 vol%, the microhardness of Ag/rGO-Cu composite
block reached the maximum value of 81 HV. The flexural strength of
the Ag/0.8 vol% rGO-Cu composite reached 472 MPa. The modification
of rGO by Ag improved the poor interfacial bonding between graphene
and Cu matrix, and formed Ag\\Cu bond to increase the enhancement
effect of the reinforcing phase.

(2) Modification with rare earth elements. Because rare earth ele-
ments are effective auxiliary additives in other materials, researchers
used the rare earth elements to modify graphene, thereby improving
the dispersibility of graphene and the weak bonding interface with
the matrix.220 Rare earth elements have a high coordination number
with graphene to form a coordination bond. This will reduce the inter-
face energy and surface energy of graphene, and improve the dispersion
of graphene. At the same time, the rare earth element has low electro-
negativity and large activity, and can reduce the defects at the compos-
ite interfaces and improve the interface bonding strength.221

(3) GO surfaces often have a large number of hydrophilic functional
groups containing oxygen, which will make graphene oxide evenly dis-
persed in water or solution. The metal matrix powders can then be
added to the active agent to obtain the solvent containing metal matrix
ions.222 In thisway, the negative grapheneoxides and the positivemetal
matrix ions have electrostatic adsorption,which can inhibit the agglom-
eration of GOs. For example, Gao et al.10 prepared the negatively
charged GOs using the improved Hummers method, then treated the
copper powder surface with cetyltrimethylammonium bromide to
make it positively charged. They prepared the GO/Cu powder by
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electrostatic self-assembly, and then formed the composites using the
PM technology. It was found that the graphene in the Cu based compos-
ite prepared by this method had a good dispersion and no obvious ag-
glomeration. The tensile strength and hardness reached the maximum
value, and the thermal conductivity was as high as 396 W·m−1·K−1.

6.4. Prospects for the future development of GRMMNCs

In future research, the following directions can be explored and
researched.

(a) Using modern rapid sintering methods such as microwave
sintering and SPS to reduce the defects of composite materials
and increase the density, as well as in-situ growth CVD and elec-
troless plating technology.

(b) Improving the dispersion and distribution of graphene
nanofillers. It is well known that when the material reaches the
nanometer scale, its surface energy is very high. Therefore, the
graphene nanofillers are difficult to disperse into the matrix.
For example, functionalization or modification of graphene can
be done before it is introduced into metal matrix.

(c) Improving interactions between graphene and the metal matrix.
Improving the interaction between graphene and metal matrix
can effectively improve the interface bonding strength, and
thus improve the mechanical, physical and chemical properties
of GRMMNCs. This is also one of the current research hot topics.
For example, it is very important to search for new intermediate
materials to optimize the bond between the matrix and
graphene.

(d) Controlling reduction of graphene oxide in nanocomposites. GO
has a simple preparationmethod and is low cost, so it is currently
the most widely used graphene derivative, and the addition of
GO to the matrix requires reduction treatment to obtain rGO. At
present, the most commonly used reduction methods include
thermal reduction and chemical reduction, but the reduction de-
gree of these methods is not high. After the reduction, there are
still oxygen-containing groups on the surface of GO, which
leads to an increase in the degree of composite interface defects.
Therefore, it is the current research trend of GRMMNCs to de-
velop methods with high reduction degree and controllable re-
duction.

(e) Since graphene-reinforced metal matrix composites are still in
the theoretical development stage, the use of numerical simula-
tion to broaden theoretical research has broad research
prospects.
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