12 research outputs found

    Impact of the magnetic field-assisted freezing on the moisture content, water migration degree, microstructure, fractal dimension, and the quality of the frozen tilapia

    No full text
    In this study, we determined the effect of a magnetic field applied during refrigeration in improving the quality of frozen tilapia. Alternating magnetic fields of 10 G, 20 G, 30 G, 40 G, and 50 G were applied during a low-temperature freezing treatment on the back, abdomen, and tail of tilapia. The control group was set at 0 G. A correlation analysis for the fish films after treating with different magnetic field strengths was carried out. The results showed that when the magnetic field was applied to assist freezing, the frozen quality of the tilapia was significantly improved, and the water separation and residual damage were reduced. The felled muscle tissue decreased, the fractal dimension value increased, the hardness decreased, and the elasticity increased. However, the impact of the magnetic field on the quality of the frozen tilapia did not change with an increase in the magnetic field strength. The effect on the back samples was more prominent when the fish were exposed to the magnetic field strength of 40 or 50 G. A magnetic field strength of 50 G was the most effective for the abdominal and tail samples. However, no significant difference was observed in the groups exposed to 10 and 20 G of magnetic fields

    Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network

    No full text
    Owing to its unique combination of electrical, physiochemical, and one-dimension structural properties, single-walled carbon nanotube (SWNT) has recently emerged as a novel nanoelectronic biosensor for biomolecular detection with extraordinary sensitivity and simple detection scheme. All the realizations so far, however, are limited to static in vitro measurement. Dynamic detection of biomolecule release from living cells which may occur in millisecond timescale has yet to be demonstrated. In the present work, SWNT network was utilized to directly interface with living neuroglial astrocytes and label-freely detect the triggered release of adenosine triphosphate (ATP) from these cells with high temporal resolution. The secreted ATP molecules diffuse into the narrow interface gap between the SWNT-net and the astrocyte, and interact with the nanotubes. Highly charged ATP molecules electrostatically modulate the SWNT conductance leading to measurable current response. This technique provides a novel platform to study ATP release and signaling which play important roles in astrocyte–neuron crosstalk and other essential cellular functions.Accepted versio

    A New Perspective for Osteosarcoma Therapy: Proteasome Inhibition by MLN9708/2238 Successfully Induces Apoptosis and Cell Cycle Arrest and Attenuates the Invasion Ability of Osteosarcoma Cells in Vitro

    No full text
    Background: The proteasome exists in all eukaryotic cells and provides the main route of intracellular proteins degradation involved in cell growth and apoptosis. Proteasome inhibition could block protein degradation pathways and disturb regulatory networks, possibly leading to profound effects on cell growth, particularly in cancer cells. A proteasome inhibitor with an appropriate toxicity index for malignant cells rather than normal cells would be an attractive anticancer therapy. Methods: The human osteosarcoma (OS) cell lines MG-63 and Saos-2 and normal osteoblast cells were used to study the antitumour activity of the proteasome inhibitor MLN9708/2238. Results: MLN2238 inhibited cell growth, induced cell cycle arrest and apoptosis, and attenuated the invasion abilities of MG-63 and Saos-2 cells, with little cytotoxicity to normal cells. In addition, MLN2238 promoted antitumour mechanisms including the accumulation of E2F1, P53, P21 and other negative G2/M checkpoint proteins; up-regulated the relative expression ratio of BAX/BCL-2, APAF-1 and pro-apoptotic proteins of the BCL-2 family; triggered mitochondrial outer membrane permeabilization (MOMP); down-regulated BCL-2 and XIAP; activated caspase3/8/9; and suppressed MMP2/9 expression and secretion levels. Conclusions: The proteasome may be a novel biochemical target for OS treatment in vitro. Our study provides a promising mechanistic framework for MLN9708/2238 in OS treatment, supporting its clinical development

    Perinone-Based Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage

    No full text
    Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage technologies, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and COF-based proton storage is rarely explored. Here, we report a perinone-based ladder-type 2D c-COF towards fast proton storage in both mild aqueous Zn-ion electrolyte and strong acid. We unveil that the generated C-O- groups via discharge exhibit largely reduced basicity due to the considerable pi-delocalization in perinone, thus affording the 2D c-COF a unique affinity to proton with fast kinetics. As a consequence, the 2D c-COF electrode presents outstanding rate capability up to 200 A g-1 (over 2500C). Our work reports the first example of proton storage among COFs and highlights the great potential of perinone-based 2D c-COF in future energy devices

    Persulfurated Coronene: A New Generation of “Sulflower”

    No full text
    We report the first synthesis of a persulfurated polycyclic aromatic hydrocarbon (PAH) as a next-generation “sulflower.” In this novel PAH, disulfide units establish an all-sulfur periphery around a coronene core. The structure, electronic properties, and redox behavior were investigated by microscopic, spectroscopic and electrochemical methods and supported by density functional theory. The sulfur-rich character of persulfurated coronene renders it a promising cathode material for lithium–sulfur batteries, displaying a high capacity of 520 mAh g<sup>–1</sup> after 120 cycles at 0.6 C with a high-capacity retention of 90%
    corecore