2,707 research outputs found

    Intersection theory and the Alesker product

    Full text link
    Alesker has introduced the space V(M)\mathcal V^\infty(M) of {\it smooth valuations} on a smooth manifold MM, and shown that it admits a natural commutative multiplication. Although Alesker's original construction is highly technical, from a moral perspective this product is simply an artifact of the operation of intersection of two sets. Subsequently Alesker and Bernig gave an expression for the product in terms of differential forms. We show how the Alesker-Bernig formula arises naturally from the intersection interpretation, and apply this insight to give a new formula for the product of a general valuation with a valuation that is expressed in terms of intersections with a sufficiently rich family of smooth polyhedra.Comment: further revisons, now 23 page

    Riemannian curvature measures

    Full text link
    A famous theorem of Weyl states that if MM is a compact submanifold of euclidean space, then the volumes of small tubes about MM are given by a polynomial in the radius rr, with coefficients that are expressible as integrals of certain scalar invariants of the curvature tensor of MM with respect to the induced metric. It is natural to interpret this phenomenon in terms of curvature measures and smooth valuations, in the sense of Alesker, canonically associated to the Riemannian structure of MM. This perspective yields a fundamental new structure in Riemannian geometry, in the form of a certain abstract module over the polynomial algebra R[t]\mathbb R[t] that reflects the behavior of Alesker multiplication. This module encodes a key piece of the array of kinematic formulas of any Riemannian manifold on which a group of isometries acts transitively on the sphere bundle. We illustrate this principle in precise terms in the case where MM is a complex space form.Comment: Corrected version, to appear in GAF

    Convolution of convex valuations

    Get PDF
    We show that the natural "convolution" on the space of smooth, even, translation-invariant convex valuations on a euclidean space VV, obtained by intertwining the product and the duality transform of S. Alesker, may be expressed in terms of Minkowski sum. Furthermore the resulting product extends naturally to odd valuations as well. Based on this technical result we give an application to integral geometry, generalizing Hadwiger's additive kinematic formula for SO(V)SO(V) to general compact groups GO(V)G \subset O(V) acting transitively on the sphere: it turns out that these formulas are in a natural sense dual to the usual (intersection) kinematic formulas.Comment: 18 pages; Thm. 1.4. added; references updated; other minor changes; to appear in Geom. Dedicat

    Symmetric Criticality for Tight Knots

    Full text link
    We prove a version of symmetric criticality for ropelength-critical knots. Our theorem implies that a knot or link with a symmetric representative has a ropelength-critical configuration with the same symmetry. We use this to construct new examples of ropelength critical configurations for knots and links which are different from the ropelength minima for these knot and link types.Comment: This version adds references, and most importantly an acknowledgements section which should have been in the original postin

    Integral geometry of complex space forms

    Full text link
    We show how Alesker's theory of valuations on manifolds gives rise to an algebraic picture of the integral geometry of any Riemannian isotropic space. We then apply this method to give a thorough account of the integral geometry of the complex space forms, i.e. complex projective space, complex hyperbolic space and complex euclidean space. In particular, we compute the family of kinematic formulas for invariant valuations and invariant curvature measures in these spaces. In addition to new and more efficient framings of the tube formulas of Gray and the kinematic formulas of Shifrin, this approach yields a new formula expressing the volumes of the tubes about a totally real submanifold in terms of its intrinsic Riemannian structure. We also show by direct calculation that the Lipschitz-Killing valuations stabilize the subspace of invariant angular curvature measures, suggesting the possibility that a similar phenomenon holds for all Riemannian manifolds. We conclude with a number of open questions and conjectures.Comment: 68 pages; minor change

    Criticality for the Gehring link problem

    Full text link
    In 1974, Gehring posed the problem of minimizing the length of two linked curves separated by unit distance. This constraint can be viewed as a measure of thickness for links, and the ratio of length over thickness as the ropelength. In this paper we refine Gehring's problem to deal with links in a fixed link-homotopy class: we prove ropelength minimizers exist and introduce a theory of ropelength criticality. Our balance criterion is a set of necessary and sufficient conditions for criticality, based on a strengthened, infinite-dimensional version of the Kuhn--Tucker theorem. We use this to prove that every critical link is C^1 with finite total curvature. The balance criterion also allows us to explicitly describe critical configurations (and presumed minimizers) for many links including the Borromean rings. We also exhibit a surprising critical configuration for two clasped ropes: near their tips the curvature is unbounded and a small gap appears between the two components. These examples reveal the depth and richness hidden in Gehring's problem and our natural extension.Comment: This is the version published by Geometry & Topology on 14 November 200
    corecore