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Circles minimize most knot energies
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Abstract

We de0ne a new class of knot energies (known as renormalization energies) and prove that a broad class
of these energies are uniquely minimized by the round circle. Most of O’Hara’s knot energies belong to this
class. This proves two conjectures of O’Hara and of Freedman, He, and Wang. We also 0nd energies not
minimized by a round circle. The proof is based on a theorem of L7ukő on average chord lengths of closed
curves. ? 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

For the past decade, there has been a great deal of interest in de0ning new knot invariants by
minimizing various functionals on the space of curves of a given knot type. For example, imagine a
loop of string bearing a uniformly distributed electric charge, <oating in space. The loop will repel
itself, and settle into some least energy con0guration. If the loop is knotted, the potential energy of
this con0guration will provide a measure of the complexity of the knot.

In 1991 Jun O’Hara began to formalize this picture [12,14] by proposing a family of energy
functionals epj (for j, p¿ 0) which are based on the physicists’ concept of renormalization, and are
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de0ned by epj [c] := (1=j)(Ep
j [c])

1=p, where

Ep
j [c] :=

∫∫ (
1

|c(s)− c(t)|j −
1

d(s; t)j

)p
ds dt; (1)

c : S1 → R3 is a unit-speed curve, |c(s) − c(t)| is the distance between c(s) and c(t) in space, and
d(s; t) is the shortest distance between c(s) and c(t) along the curve. O’Hara showed [15] that these
integrals converge if c is smooth, embedded, and j¡ 2 + 1=p. He also showed that a minimizing
curve exists in each isotopy class when jp¿ 2.

It was then natural to try to 0nd examples of these energy-minimizing curves in various knot types.
O’Hara conjectured [13] in 1992 that the energy-minimizing unknot would be the round circle for
all epj energies with p¿ 2=j¿ 1, and wondered whether this minimum would be unique. Later that
year, he provided some evidence to support this conjecture by proving [14] that the limit of epj as
p → ∞ and j → 0 was the logarithm of Gromov’s distortion, which was known to be minimized
by the round circle (see [10] for a simple proof).

Two years later, Freedman, He, and Wang investigated a family of energies almost identical to
the epj energies, proving that the e12 energy was M7obius-invariant [4], and as a corollary that the
overall minimizer for e12 was the round circle. For the remaining e1j energies, they were able to show
that the minimizing curves must be convex and planar for 0¡j¡ 3 (Theorem 8.4 in [4]). They
conjectured that these minimizers were actually circles.

We generalize the energies of O’Hara and Freedman–He–Wang as follows:

De�nition 1. Given a curve c : S1 → Rn parametrized by arclength; let |c(s)− c(t)| be the distance
between c(s) and c(t) in space; and d(s; t) denote the shortest distance between s and t along the
curve. Given a function F :R2 → R; the energy functional in the form

f[c] :=
∫ ∫

F(|c(s)− c(t)|; d(s; t)) ds dt; (2)

is called the renormalization energy based on F if it converges for all embedded C1;1 curves.

The main result of this paper is that a broad class of these energies are uniquely minimized by
the round circle.

Theorem 2. Suppose F(x; y) is a function from R2 to R. If F is convex and decreasing in x2 for
x2 ∈ (0; y2) and y∈ (0; �) then the renormalization energy based on F is uniquely minimized among
closed unit-speed curves of length 2� by the round unit circle.

It is easy to check that the hypotheses of Theorem 2 are slightly weaker than requiring that F
be convex and decreasing in x. The theorem encompasses both O’Hara’s and Freedman, He, and
Wang’s conjectures:
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Corollary 3. Suppose 0¡j¡ 2 + 1=p; while p¿ 1. Then for every closed unit-speed curve c in
Rn with length 2�;

Ep
j [c]¿ 23−jp�

∫ �=2

0

((
1

sin s

)j
−
(
1
s

)j)p

ds (3)

with equality if and only if c is the circle.

We must include the condition j¡ 2+1=p in our theorem, for otherwise the integral de0ning Ep
j

does not converge. We do not know whether the condition p¿ 1 is sharp, since the energies are
well-de0ned for 0¡p¡ 1, but it is required for our proof.

We use several ideas from a prophetic paper of L7ukő GKabor [11], written almost 30 years before
the conjectures of O’Hara and Freedman, He, and Wang were made. L7ukő 4 showed that among
closed, unit-speed planar curves of length 2�, circles are the only maximizers of any functional in
the form

∫ ∫
f(|c(s)− c(t)|2) ds dt; where f is increasing and concave.

Our arguments are modeled in part on Hurwitz’s proof of the planar isoperimetric inequality [8,9,3,
p. 111]. In Section 2, we derive a Wirtinger-type inequality (Theorem 5), which we use in Section
3 to generalize L7ukő’s theorem (Theorem 8). We then apply this result to obtain sharp integral
inequalities for average chord lengths and distortions. In the process, we 0nd another proof that the
curve of minimum distortion is a circle. In Section 4, we give the proof of the main theorem.

Our main result, Theorem 2, gives suLcient conditions for a renormalization energy to be mini-
mized uniquely by round circles. Since these conditions seem rather weak, it is natural to ask whether
our conditions are necessary as well. Section 5 examines this question by focusing on the renormal-
ization energies based on the functions F(x; y)=−xp. For p6 2, these energies obey the conditions
of Theorem 2, while for p¿ 2 they do not. Numerical experiments suggest that for p6p∗, where
3:46¡p∗¡ 3:5721, the minimizing curves continue to be round circles. Thus it seems that our
conditions are not necessary for the theorem to hold.

2. A Wirtinger-type inequality

De�nition 4. Let � :R → R be given by

�(s) := 2 sin
s
2
: (4)

For 06 s6 2�; �(s) is the length of the chord connecting the end points of an arc of length s in
the unit circle.

Our main aim in this section is to prove the following inequality, modeled after a well known
lemma of Wirtinger [3, p. 111]. For simplicity, we restrict our attention to closed curves of
length 2� in Rn.

4 There are references in the literature to papers authored both by L7ukő GKabor and by GKabor L7ukő. We are informed that
these people are identical and that L7ukő is the family name; the confusion likely results from the Hungarian convention
of placing the family name 0rst.
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Theorem 5. Let c : S1 :=R=2�Z → Rn be an absolutely continuous function. If c′(t) is square
integrable; then for any s∈R∫

|c(t + s)− c(t)|2 dt6 �2(s)
∫

|c′(t)|2 dt (5)

with equality if and only if s is an integral multiple of 2� or

c(t) = a0 + (cos t) a+ (sin t)b (6)

for some vectors a0; a; b∈Rn.

We give two proofs of this result, one based on the elementary theory of Fourier series, and one
based on the maximum principle for ordinary diMerential equations.

Fourier series proof. We assume that c : S1 → Rn ⊂ Cn; as the complex form of the Fourier series is
more convenient. Cn is equipped with its standard positive de0nite Hermitian inner product 〈v; w〉=∑n

k=1 vk Nwk; where v= (v1; : : : ; vn) and w= (w1; : : : ; wn). This agrees with the usual inner product on
Rn ⊂ Cn. The norm of v∈Cn is given by |v| :=√〈v; v〉; and i :=

√−1.
The facts about Fourier series required for the proof are as follows. If � : S1 → Cn is locally

square integrable then it has a Fourier expansion

�(t) =
∞∑

k=−∞
�kekti

(the convergence is in L2 and the series may not converge pointwise). The L2 norm of � is given
by ∫

|�(t)|2 dt = 2�
∞∑

k=−∞
|�k |2: (7)

If � is absolutely continuous and �′ is locally square integrable then �′ has the Fourier expansion
�′(t) = i

∑∞
k=−∞ k�kekti and therefore∫

|�′(t)|2 dt = 2�
∞∑

k=−∞
k2|�k |2 = 2�

∞∑
k=1

k2(|�−k |2 + |�k |2) (8)

as the contribution to the middle sum from the term k = 0 is zero.
Let

∑∞
k=−∞ akekti be the Fourier expansion of c(t), where ak ∈Cn. Then

c(t + s=2)− c(t − s=2)=
∞∑

k=−∞
(eksi=2 − e−ksi=2)akekti

=2i
∞∑

k=−∞

(
sin

ks
2

)
akekti:
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Therefore, using (7), we have∫
|c(t + s)− c(t)|2 dt=

∫ ∣∣∣c(t + s
2

)
− c

(
t − s

2

)∣∣∣2 dt

=2�|2i|2
∞∑

k=−∞

(
sin2

ks
2

)
|ak |2

= 8�
∞∑
k=1

(
sin2

ks
2

)
(|a−k |2 + |ak |2): (9)

Also, by (8) and (4),

�2(s)
∫

|c′(t)|2 dt=
(
4 sin2

s
2

)(
2�

∞∑
k=1

k2(|ak |2 + |a−k |2)
)

=8�
∞∑
k=1

(
k2 sin2

s
2

)
(|ak |2 + |a−k |2): (10)

Subtracting (9) from (10), we set

�c(s) := �2(s)
∫

|c′(t)|2 dt −
∫

|c(t + s)− c(t)|2 dt

= 8�
∞∑
k=2

(
k2 sin2

s
2
− sin2

ks
2

)
(|a−k |2 + |ak |2):

Lemma 6 (below) implies that �c(s)¿ 0 with equality if and only if s is a multiple of 2�, or
ak = a−k = 0 for all k¿ 2. The latter occurs if and only if

c(t) = a−1e−it + a0 + a1eit = a0 + (cos t)a+ (sin t)b; (11)

where a := a1 + a−1 and b := i(a1 − a−1).

Lemma 6. Let k¿ 2 be an integer. Then

sin2(k )6 k2 sin2( ) (12)

with equality if and only if  = m� for some integer m.

Proof. If  =m�; for some integer m; then equality holds in (12). If  is not an integer multiple of
�; we set qk( ) := |sin(k )=sin( )|. Then |cos( )|¡ 1; and the addition formula for sine yields

qk+1( ) = |cos( )qk( ) + cos(k )|¡qk( ) + 1 (13)

Since q1( ) ≡ 1; we then have qk( )¡k by induction; which completes the proof.
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Maximum principle proof. This method is an adaptation of L7ukő’s approach [11]. In that paper; he
solves a discrete version of the problem; showing that the average squared distance between the
vertices of an n-gon of constant side length is maximized by the regular n-gon. He then obtains the
main result by approximation. We go directly to the continuum case; which turns out to be simpler.

To simplify notation, let L=
∫ |c′(t)|2 dt. Let

f(s) :=
∫

|c(t + s)− c(t)|2 dt;

#(s) := �2(s)
∫

|c′(t)|2 = L�2(s):

We claim that f is C2 with

f′(s) = 2
∫

〈c(t)− c(t − s); c′(t)〉 dt;

f′′(s) = 2
∫

〈c′(t − s); c′(t)〉 dt;

and initial conditions

f(0) = 0; f′(0) = 0; f′′(0) = 2
∫

|c′(t)|2 dt = 2L: (14)

These formulas are clear when c is C2 and hold in the general case by approximating by C2

functions. The explicit formula for f′′ makes it clear that f is C2.
Next we derive a diMerential inequality for f, using an elementary geometric fact (which appears

in a slightly diMerent form in L7ukő’s paper as Lemma 7).

Lemma 7. For any tetrahedron A; B; C; D in Rn;

|AC|2 + |BD|26 |BC|2 + |AD|2 + 2|AB| |CD| (15)

with equality if and only if AB and DC are parallel as vectors.

Proof. Denote the vectors AB; BC; CD; DA by v1; v2; v3; v4. Then
∑

vi = 0; and

|AC|2 + |BD|2 = 1
2
(|v1 + v2|2 + |v2 + v3|2 + |v3 + v4|2 + |v4 + v1|2)

=
4∑

i=1

|vi|2 + 〈v1; v2〉+ 〈v2; v3〉+ 〈v3; v4〉+ 〈v4; v1〉

=
4∑

i=1

|vi|2 + 〈v1 + v3; v2 + v4〉
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=
4∑

i=1

|vi|2 − |v1 + v3|2

6
4∑

i=1

|vi|2 − (|v1| − |v3|)2

= |v2|2 + |v4|2 + 2|v1‖v3|= |BC|2 + |AD|2 + 2|AB| |CD|:
Equality holds if and only if v3 = −�v1 for some �¿ 0; which is equivalent to AB and DC being
parallel as vectors.

For any t, s and h, we can apply Lemma 7 to the tetrahedron c(t), c(t+ s+ h), c(t+ s), c(t+ h)
to derive the equation

|c(t + s)− c(t)|2 + |c(t + s+ h)− c(t + h)|26 |c(t + s+ h)− c(t + s)|2

+ |c(t + h)− c(t)|2 + 2|c(t + s+ h)− c(t)| |c(t + s)− c(t + h)|:
Holding s; h 0xed and integrating with respect to t,

2f(s)6 2f(h) + 2
∫

|c(t + s+ h)− c(t)| |c(t + s)− c(t + h)| dt

6 2f(h) + 2
√

f(s+ h)f(s− h)

by the Cauchy–Schwartz inequality. Therefore, f(s)6f(h) +
√

f(s+ h)f(s− h). For any 0xed s,
this can be rewritten

g(h) := 1
2(logf(s+ h) + logf(s− h))− log(f(s)− f(h))¿ 0:

When s is not a multiple of 2�, f(s)¿ 0 and g is well-de0ned for small h. Further, g has a local
minimum at h= 0, and so the second derivative of g is non-negative at zero. Using (14), this tells
us that

d2

ds2
logf(s)¿

−2L
f(s)

: (16)

Meanwhile, #(s) satis0es the diMerential equation

d2

ds2
log#(s) =

−2L
#(s)

: (17)

We are trying to show that f(s)6#(s) and that if equality holds for any s∈ (0; 2�), then f(s) ≡
#(s). Let

u(s) = log
f(s)
#(s)

= logf(s)− log#(s):
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In these terms, we want to show that u(s)6 0 and that if u(s) = 0 for some s∈ (0; 2�) then u ≡ 0.
Using (16) and (17),

u′′(s)¿
−2L
f(s)

+
2L
#(s)

=
2L
f(s)

(
f(s)
#(s)

− 1
)
=

2L
f(s)

(eu(s) − 1)¿
2L
f(s)

u(s):

By two applications of L’Hospital’s rule, we compute lims→0u(s) = 0. Thus, the limit lims→2�u(s)
is zero, as well. So if u is ever positive, it will have a positive local maximum at some point
s0 ∈ (0; 2�). At that point,

0¿ u′′(s0)¿
2L

f(s0)
u(s0)¿ 0;

which is a contradiction. So u is non-positive on (0; 2�). Further, if u is zero at any point in (0; 2�),
the strong maximum principle [22, Theorem 17, p. 183] implies that u vanishes on the entire interval.
Thus f(s)6#(s) with equality at any point of (0; 2�) if and only if f(s) ≡ #(s).
Last, we show that if f(s)=

∫ |c(t+ s)− c(t)|2 dt ≡ �2(s)
∫ |c′(t)|2 dt=#(s); then c is an ellipse.

By our work above, if f = #, then for each 0xed s, c maximizes
∫ |c(t + s) − c(t)|2 dt subject to

the constraint that
∫ |c′(t)|2 dt is held constant. The Lagrange multiplier equation for this variational

problem is

c′′(t) =M (c(t + s)− 2c(t) + c(t − s));

where M is a constant depending on s. When s = � we can use the fact that c has period 2� and
this becomes

c′′(t) = 2M (c(t + �)− c(t)): (18)

DiMerentiating twice with respect to t, and using both the periodicity and (18),

c′′′′(t) = 2M (c′′(t + �)− c′′(t))

= 4M 2(c(t)− c(t − �)− c(t + �) + c(t))

=−8M 2(c(t + �)− c(t))

=−4Mc′′(t):

So c′′ satis0es the equation g′′ = −4Mg and has period 2�. This implies that 4M = k2 for some
k ∈Z, and c′′(t)= (cos kt)V +(sin kt)W with V and W in Rn. But k=±1, for otherwise f(2�=k)=
0 
=#(2�=k), a contradiction. Taking two antiderivatives,

c(t) = a0 + tb0 + (cos t)a+ (sin t)b;

with a0; b0; a; b in Rn. Periodicity implies that b0 = 0, completing the proof.

We remark that by (11), extremals for the inequality of Theorem 5 are either ellipses or double
coverings of line segments, depending on whether a and b are linearly independent. Thus, the
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set of extremal curves is invariant under aLne maps of Rn. When the extremal is an ellipse, the
parameterization is a constant multiple of the special a5ne arclength (cf. [2, p. 7], [21, p. 56]). It
would be interesting to 0nd an aLne invariant interpretation of inequality (5) or of the de0cit �c(s)
used in the 0rst proof—especially when c is a convex planar curve.

3. Inequalities for concave functionals

We now apply Theorem 5 to obtain an inequality for chord lengths. Recall De0nition 4, that �(s)
is the length of a chord of arclength s on the unit circle.

Theorem 8. Let c be a closed; unit-speed curve of length 2� in Rn. For 0¡s¡ 2�; if f :R → R
is increasing and concave on (0; d(0; s)2]; where d(s; t) is the shortest distance along the curve
between c(s) and c(t); then

1
2�

∫
f(|c(t + s)− c(t)|2) dt6f(�2(s)) (19)

and equality holds if and only if c is the unit circle.

Proof. The shortest distance between c(t) and c(t + s) along the curve is d(0; s). Thus; the squared
chord length |c(t + s) − c(t)|2 is in (0; d(0; s)2]; except when s = 0. Being unde0ned at this point
does not aMect the existence of the integrals. Using Jensen’s inequality for concave functions
[18; p. 115]; Theorem 5; that f is increasing; and that |c′(t)| = 1 for almost all t; we
have

1
2�

∫
f(|c(t + s)− c(t)|2) dt6f

(
1
2�

∫
|c(t + s)− c(t)|2 dt

)

6f
(
�2(s)
2�

∫
|c′(t)|2 dt

)

= f(�2(s)):

If equality holds in (19); then the above string of inequalities implies that equality holds between
the two middle terms; i.e.; equality holds in (5). Thus; since 0¡s¡ 2�; we may apply Theorem 5
to conclude that c(t) must be as in (6). Since c has unit speed; it follows that

c′(t) =−(sin t)a+ (cos t)b

is a unit vector for all t; which forces the vectors a and b to be orthonormal; and so implies that c
is the unit circle. Conversely; if c is the unit circle; then |c(t+ s)−c(t)|=�(s) for all t and therefore
equality holds in (19).

Letting f(x) =
√
x in Theorem 8, we obtain the following inequality:
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Corollary 9. Let c be a closed; unit-speed curve of length 2� in Rn. Then for any s;

1
2�

∫
|c(t + s)− c(t)| dt6 �(s); (20)

with equality if and only if c is the unit circle.

Next we apply Theorem 8 to obtain sharp inequalities for Gromov’s distortion [6,10]. By de0ni-
tion, the distortion of a curve is the maximum value of the ratio of the distance along the curve to
the distance in space for all pairs of points on the curve. As we mentioned above, distortion is a
limit of O’Hara energies: exp(e∞0 (c)) = distort(c) [15, p. 150].

Inequality (22) is due to Gromov [7, pp. 11–12] (but see also [10]). As always, while we state
our results for curves of length 2�, the corresponding result holds for curves of arbitrary length.

Corollary 10. For every closed; unit-speed curve c of length 2� in Rn

distorts(c) := sup
t∈R

s
|c(t + s)− c(t)|¿

s
�(s)

; (21)

distort(c) := sup
s∈(0;�]

distorts(c)¿
�
2

(22)

with equalities if and only if c is the unit circle.

Proof. In both cases equality is clear for the unit circle. By the mean value property of integrals
and inequality (20);

1
distorts(c)

= inf
t∈R

|c(t + s)− c(t)|
s

6
1
2�s

∫
|c(t + s)− c(t)| dt6 �(s)

s
;

establishing (21). Further; equality in (21) implies equality in (20); which; by Theorem 8; happens
if and only if c is the unit circle.

The proof of (22) follows easily from (21):

distort(c) = sup
s∈(0;�]

distorts(c)¿ distort�(c)¿
�

�(�)
=

�
2
;

and again equality implies in particular that distort�(c) = �=�(�), which, by (21), happens if and
only if c is the unit circle.

For general maps f :M → Rn of a compact m dimensional Riemannian manifold to Euclidean
space, Gromov [6, p. 115] has given the general lower bound

distort(f)2¿
�1(M)

∫∫
M×M d(x; y)2 dx dy

2mVol(M)2
;

where d(x; y) is the Riemannian distance between x and y and �1(M) is the 0rst eigenvalue of the
Laplace operator on M . When M = S1 this reduces to distort(f)¿ �=

√
6.
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4. Proof of the main theorem

We are now ready to prove the main theorem. We start by recalling its statement.

Theorem 11. Suppose F(x; y) is a function from R2 to R. If F is convex and decreasing in x2 for
x2 ∈ (0; y2] and y∈ (0; �) then the renormalization energy based on F;

f[c] :=
∫∫

F(|c(s)− c(t)|; d(t; s)) dt ds;

is uniquely minimized among closed unit-speed curves of length 2� by the round unit circle.

Proof. Making the substitution s �→ s − t; t �→ t; changing the order of integration; and using the
fact that d(s; t) = d(s+ a; t + a) for any a; we have∫∫

F(|c(s)− c(t)|; d(s; t)) ds dt =
∫∫

F(|c(t + s)− c(t)|; d(0; s)) dt ds:
For each s∈ (0; 2�); if we let f(x) =−F(x; d(0; s)); then∫

F(|c(t + s)− c(t)|; d(0; s)) dt =−
∫

f(|c(t + s)− c(t)|2) dt

and f is increasing and concave on (0; d(0; s)2]. By Theorem 8;

−
∫

f(|c(t + s)− c(s)|2) dt¿− 2�f(�2(s)) (23)

with equality if and only if c is the unit circle. Integrating this from s = 0 to 2� tells us that f[c]
is greater than or equal to the corresponding value for the unit circle; with equality if and only if
(23) holds for almost all s∈ [0; 2�]. But if equality holds for some value of s∈ (0; 2�); then c is
the unit circle.

We now prove the corollary.

Corollary 12. Suppose 0¡j¡ 2 + 1=p; while p¿ 1. Then for every closed unit-speed curve c in
Rn with length 2�;

Ep
j [c]¿ 23−jp�

∫ �=2

0

((
1

sin s

)j
−
(
1
s

)j)p

ds: (24)

with equality if and only if c is the circle.

Proof. If we let

F(x; y) :=
(
1
xj

− 1
yj

)p
;

then using (1); we see that Ep
j [c] is the renormalization energy based on F . We must show that

F(
√
x; y) is convex and decreasing in x for x∈ (0; y2] for all y∈ (0; �). If we let u := x2; it suLces

to check the signs of the 0rst and second partial derivatives of F(
√
u; y) with respect to u for

u∈ (0; y2).
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When p¿ 1, y 
=0, and u∈ (0; y2),

@F(
√
u; y)

@u
=− jp

2u(j+2)=2

(
1
uj=2

− 1
yj

)p−1

¡ 0

and

@2F(
√
u; y)

@u2
=

j(j + 2)p
4u(j+4)=2

(
1
uj=2

− 1
yj

)p−1

+
j2p(p− 1)
4u(j+2)

(
1
uj=2

− 1
yj

)p−2

¿ 0:

Since uj=2 = xj can be arbitrarily close to yj if the curve is nearly straight, examining this equation
shows that the condition p¿ 1 is required to enforce the convexity of F in u.

So for every y 
=0, F is decreasing and convex in x2 on (0; y2]. Further, a direct calculation
shows that

∫
F(�2(s); s) ds¡∞ when j¡ 2 + 1=p.

Thus F satis0es the hypotheses of Theorem 11. Computing the energy of the round circle by
changing the variable s �→ 2s and noting that the resulting integrand is symmetric about s= �=2, we
have

Ep
j [c]¿ 2�

∫
F(�2(s); d(0; s)) ds= 23−jp�

∫ �=2

0

[(
1

sin s

)j
−
(
1
s

)j]p
ds;

with equality if and only if c is the unit circle.

5. Analysis of our results

We have now 0nished the proof of our main theorem, and shown that a family of epj energies
satisfy the hypotheses of our theorem. This process has established suLcient conditions for a renor-
malization energy based on a function F(x; y) to be uniquely minimized by round circles: F(x; y)
must be decreasing and convex in x2 for each value of y. Are these conditions necessary?

To examine this question, we focus on the natural renormalization energies based on the functions
Fp(x; y) = −xp for various values of p¿ 0. Each function Fp(x; y) is decreasing in x2. If p¡ 2,
it is also convex in x2, while for p¿ 2 it is not. This energy corresponds to the average chord
length of the curve C, measured in the Lp norm. One can show that a minimizer exists for each of
these renormalization energies. These minimizers must all be convex plane curves by ReTshetnyak’s
theorem on inextensible mappings [16,17]. (A weaker version of this theorem, which is also suLcient
for our purposes, is known as Sallee’s stretching theorem [19]. See also [5].) If each minimizer is
unique, the family of minimizers is continuous in p by a compactness argument.
We believe that there is a critical exponent p∗ so that the Fp energies are minimized by round

circles exactly when p6p∗.

Proposition 13. The critical exponent p∗ (if it exists) obeys 26p∗¡ 3:5721.

Proof. The 0rst half of the inequality is our main theorem. The second half comes from a di-
rect computation: for p¿ 3:5721; the double-covered line segment has less energy than the round
circle.
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Fig. 1. This 0gure shows two plots of the ratio r(p) of the widest and narrowest projections of the computed maximizers
of average chord length to the pth power for values of p between 1 and 4.

Using Brakke’s Evolver [1], we found numerical approximations to the minimizing curves for
values of p between 2 and 4. To measure the shape of these curves, we computed the ratio r(p) of
the largest and smallest diameter of any projection of each curve to any line in the plane. Since all of
these curves are convex, a value of r(p) close to one indicates a curve close to a circle. By this met-
ric, the computed minimizers are numerically very near to circles for 26p6 3:45. (A graph of the
results appears in Fig. 1.) This leads us to the following conjecture, which is somewhat surprising!

Conjecture 1. All the renormalization energies based on Fp(x; y) = −xp are minimized by round
circles for p¡ 3:46. (In particular; the convexity condition of Theorem 2 is not necessary.)

We remark that Proposition 13 shows that some conditions are necessary for our main theorem
to hold; that is, not every renormalization energy is minimized by a round circle!

We also observe that our conditions come from the use of the squared chord length in Theorem 4
and Jensen’s inequality in Theorem 8. Neither of these techniques seems amenable to further im-
provement, so a proof of Conjecture 1 will have to come from altogether new ideas.

We conclude with a list of open problems:

Open Problem 1. Find necessary conditions for a renormalization energy to be uniquely minimized
by the round circle.

Open Problem 2. Find the critical exponent p∗; if it exists.

Open Problem 3. Describe the shape of the minimizers for the renormalization energies based on
Fp =−xp for p¿p∗. Numerical evidence argues that these are stretched oval shapes; but they do
not seem to be ellipses; as one might have conjectured from reading Theorem 5.
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References

[1] K. Brakke, The surface evolver, Experimental Math. 1 (2) (1992) 141–165.
[2] J.D. Burago, V.A. Zalgaller, Geometric Inequalities, Grundlehren, Vol. 285, Springer, Berlin, 1980.
[3] S.S. Chern, Curves and surfaces in Euclidean space, in: S.S. Chern (Ed.), Studies in Global Geometry and Analysis,

Mathematical Association of America, Prentice-Hall, Englewood CliMs, NJ, 1967, pp. 16–56.
[4] M.H. Freedman, Z.-X. He, Z. Wang, M7obius energy of knots and unknots, Ann. Math. 139 (1994) 1–50.
[5] M. Ghomi, R. Howard, Unfoldings of space curves, preprint.
[6] M. Gromov, Filling Riemannian manifolds, J. DiMerential Geom. 18 (1983) 1–147.
[7] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkh7auser, Boston, MA, 1999.
[8] A. Hurwitz, Sur le problKeme des isopYerimKetres, C.R. Acad. Sci. Paris 132 (1901) 401–403 (reprinted in [9, pp. 490

–491]).
[9] A. Hurwitz, Mathematische Werke. Bd. I: Funktionentheorie, Birkh7auser, Basel, 1962. (Herausgegeben von der

Abteilung f7ur Mathematik und Physik der Eidgen7ossischen Technischen Hochschule in Z7urich)
[10] R.B. Kusner, J.M. Sullivan, On distortion and thickness of knots, in: S.G. Whittington, D.W. Sumners, T. Lodge

(Eds.), Topology and Geometry in Polymer Science, Papers form the IMA Workshop held at the University of
Minnesota, Minneapolis, 1996, pp. 67–78 June/Springer-Verlag, New York, 1998.
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