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Convolution of convex valuations

Andreas Bernig · Joseph H. G. Fu

Abstract We show that the natural “convolution” on the space of smooth, even,
translation-invariant convex valuations on a euclidean space V, obtained by inter-
twining the product and the duality transform of S. Alesker J. Differential Geom. 63:
63–95, 2003; Geom.Funct. Anal. 14:1–26, 2004 may be expressed in terms of Minkow-
ski sum. Furthermore the resulting product extends naturally to odd valuations as
well. Based on this technical result we give an application to integral geometry, gen-
eralizing Hadwiger’s additive kinematic formula for SO(V) Convex Geometry, North
Holland, 1993 to general compact groups G ⊂ O(V) acting transitively on the sphere:
it turns out that these formulas are in a natural sense dual to the usual (intersection)
kinematic formulas.

Keywords Valuation · Kinematic formula · Convolution · Minkowski sum ·
Alesker product

Mathematics Subject Classifications (2000) 53C65 · 52A22

1 Introduction

1.1 General introduction

In the series of papers [1–4], S. Alesker has introduced an array of fundamental oper-
ations on convex valuations, illuminating and extending many classical constructions.
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In rough terms, the space Val(V) of continuous translation-invariant valuations on
a finite-dimensional euclidean space V turns out to be (among other features) a
commutative graded algebra with linear involution D (cf. Sect. 1.2 below for precise
definitions). Thinking of D as analogous to the Fourier transform, Alesker has asked
for a geometric characterization of the resulting “convolution” obtained by intertwin-
ing the product with D. Our main technical result (Theorem 1.2 below) is that this
convolution is simply an artifact of the Minkowski sum operation.

Our main application (Theorem 1.7) may be described as follows. Alesker has
shown that if G ⊂ O(V) acts transitively on the sphere of V then the dimension of
the subspace ValG ⊂ Val(V) of G-invariant valuations is finite. It follows easily that if
φ1, . . . , φN is a basis then given any ψ ∈ ValG there are constants cij = cψ

ij such that

∫
G

ψ(A ∩ ḡB) dḡ =
N∑

i,j=1

cij φi(A) φj(B) (1)

for any compact convex bodies A, B ⊂ V (here G = G � V is the group generated by
G and the translation group of V; the classical case G = O(V) or SO(V) was given
originally by Blaschke).

By the same token there is also another, less well known, array of kinematic for-
mulas for Minkowski addition instead of intersection. Hadwiger worked these out for
G = O(V) or SO(V) (cf. [17]). Theorem 1.7 states that for general G the addition and
intersection formulas are simply transforms of one another under the involution D,
provided all elements of ValG are even in the sense of Sect. 1.2 below.

The relations established in this paper also furnish the means for a fuller under-
standing of the integral geometry of the unitary group, originally studied in [2] and
[13], including a completely explicit form of the principal kinematic formula for this
group. This will be the subject of another paper.

1.2 Definitions and background

1.2.1 Valuations

Throughout the paper, V will denote a finite-dimensional euclidean vector space. By
K(V) we denote the space of nonempty compact convex sets in V, endowed with the
Hausdorff metric. The dense subspace Ksm(V) consists of compact convex sets with
smooth and strictly convex boundary.

A (convex) valuation on V is a complex-valued map φ on K(V) such that

φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L)

whenever K, L, K ∪ L ∈ K(V). The valuation φ is called translation invariant if φ(K +
x) = φ(K) for all x ∈ V, K ∈ K(V). We will denote the space of continuous translation
invariant valuations by Val(V) and use the abbreviated term valuation to refer to them.
However we note that Alesker [5–8, 10] has introduced a much broader notion of val-
uation that makes sense even on smooth manifolds. The restricted class of valuations
considered here is in some sense an infinitesimal version of this broader notion.

A valuation ϕ is said to have parity ε = ± if ϕ(−K) = εϕ(K) for all K ∈ K(V)

(more colloquially we will call such valuations even and odd, respectively); it is said to
have degree k if ϕ(tK) = tkϕ(K) for all K ∈ K(V) and all t ≥ 0. Put Valεk(V) ⊂ Val(V)
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for the subspace of valuations of degree k and parity ε. A theorem of McMullen [16]
states that

Val(V) =
⊕

0≤k≤n, ε=±
Valεk(V), (2)

where dim V = n. It follows that Val(V) carries a natural Banach space structure, with
norm

‖ ϕ ‖ := sup
K⊂B

|ϕ(K)|, (3)

where B ⊂ V is a fixed bounded set with nonempty interior. Furthermore Val0 and
Valn are both one-dimensional, spanned by the Euler characteristic χ and the volume
vol, respectively.

Note that GL(V) acts continuously on Val(V) and on each Valεk(V) by g · ϕ(K) :=
ϕ(g−1K), g ∈ GL(V), ϕ ∈ Val(V), K ∈ K(V). If the map g 	→ gφ is a smooth map
GL(V) → Val(V), then the valuation φ is said to be GL(V)-smooth. The subspace of
GL(V)-smooth valuations, endowed with the C∞ topology obtained by identifying φ

with the map g 	→ gφ, is denoted by Valsm(V).
Given A ∈ K we define μA ∈ Val by

μA(K) := vol(A + K), (4)

where A + K := {a + k : a ∈ A, k ∈ K} is the Minkowski sum. If A ∈ Ksm then
μA ∈ Valsm, and if A is antipodally symmetric then μA ∈ Val+. McMullen conjec-
tured, and Alesker [1] proved, that

Theorem 1.1 The linear span 〈μA : A ∈ K〉 is dense in Val. The linear span 〈μA : A ∈
Ksm〉 is dense in Valsm.

1.2.2 Alesker product and Crofton measures

The Alesker product is defined by putting

μA · μB(K) = vol(�(K) + A × B), K ∈ K, (5)

where �: V → V × V denotes the diagonal embedding, then extending to all pairs
φ, ψ ∈ Valsm by continuity [4]. Using Fubini’s theorem this may also be expressed

μA · ϕ(K) :=
∫

V
ϕ(K ∩ (x − A)) dx, (6)

where x − A := {x − a : a ∈ A}. This endows the space Valsm(V) of smooth valuations
with the structure of a commutative graded algebra. The Euler characteristic χ is the
unit element for this product. If W ⊂ V is a subspace then the restriction map

rW: Valsm(V) → Valsm(W) (7)

is a homomorphism of algebras.
In the case of even valuations the product admits an alternative expression as fol-

lows. Given a linear subspace P ⊂ V, put πP: V → P for the orthogonal projection.
If φ ∈ Val+,sm

k (V) then there exists a smooth measure mφ on Grk(V) such that

φ(K) =
∫

Grk(V)

volk(πP(K)) dmφ(P). (8)
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(If 2 ≤ k ≤ n − 2 then this measure is not unique.) In particular, if K is included in
an affine subspace of dimension < k then φ(K) = 0. We will call such a measure a
Crofton measure for φ. If ψ ∈ Val+,sm

l (V) and k + l ≤ n then φ · ψ ∈ Val+,sm
k+l (V) is the

valuation with Crofton measure

mφ·ψ = σ∗(sin mφ × mψ), (9)

where σ: Grk(V)×Grl(V)\� → Grk+l(V) is the sum map σ(P, Q) := P+Q, � is the
null set of pairs of planes (P, Q) that fail to meet transversely, and sin: Grk × Grl →
R≥0 is the function determined by the relation

volk+l(A + B) = sin(E, F) volk(A) voll(B)

for convex sets A ⊂ E, B ⊂ F. The valuation that results is independent of the
choices of Crofton measures mφ , mψ . For more details, in the context of the more
general nontranslation-invariant case, the reader is referred to [10].

1.2.3 The Klain function and the D transform

Let φ ∈ Val+k (V). Then the restriction of φ to a k-dimensional subspace L is a multiple
of the Lebesgue (or k-dimensional Hausdorff) measure on L. Put Klφ(L) to be the
proportionality factor; the resulting continuous function Klφ : Grk(V) → R is called
the Klain function of φ. Klain [14] showed that the map Kl: Val+k (V) → C(Grk(V)) is
an injection.

The unique valuation φ ∈ Val+k (V) whose Klain function is identically 1 is called
the kth intrinsic volume and denoted by μk. These valuations are SO(V)-invariant
and, by Hadwiger’s Characterization Theorem [15], span the space of all continuous
SO(V)-invariant valuations.

Denote by ⊥: Grk → Grn−k the orthogonal complement map. The D transform
of a smooth, even and translation invariant valuation φ ∈ Val+,sm

k (V) is defined as the
unique valuation Dφ ∈ Val+,sm

n−k (V) with Klain function

KlDφ = Klφ ◦ ⊥ . (10)

Equivalently, if mφ is a Crofton measure for φ then the pushforward measure

mDφ :=⊥∗ mφ (11)

is a Crofton measure for Dφ.

1.3 Statement of results

1.3.1 The main theorem

Thinking of D as analogous to the Fourier transform, it is natural to define the convo-
lution of ϕ, ψ ∈ Val+,sm(V) by

ϕ ∗ ψ := D(Dϕ · Dψ). (12)

Alesker has asked for a geometric characterization of the convolution. Our main
theorem gives an answer in terms of the action on the valuations μA, A ∈ K(V), and
shows that it extends in a natural way to all smooth valuations, regardless of parity.
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Theorem 1.2 If A, B are smooth, strictly convex and antipodally symmetric then

μA ∗ μB = μA+B. (13)

In fact there exists a unique bilinear, continuous product ∗: Valsm ⊗ Valsm → Valsm of
degree −n such that (13) holds for general A, B ∈ Ksm. (Valsm, +, ∗) is a commutative
and associative algebra whose unit element is vol.

Another characterization is in terms of mixed volumes:

Corollary 1.3 If k + l ≥ n and A1, . . . , An−k, B1, . . . , Bn−l ∈ Ksm(V) then

VA1,...,An−k ∗ VB1,...,Bn−l =
(

k + l
k

)−1(k + l
n

)
VA1,...,An−k,B1,...,Bn−l . (14)

Remark Alesker has pointed out that Theorem 1.2 may also be stated without ref-
erence to a euclidean structure on V. As in the original treatment [2], it is formally nat-
ural to view the transform D as an isomorphism Val+,sm

k (V) → Val+,sm
n−k (V∗)⊗Dens(V),

where Dens(V) is the one-dimensional space of signed Lebesgue measures on V. Note
that to any 0 �= m ∈ Dens(V) there is a naturally associated m∗ ∈ Dens(V∗) such that
the product measure m×m∗ on V×V∗ � T∗V equals the canonical Liouville measure
on the cotangent bundle of V. Thus, even in the absence of a euclidean structure it
makes sense to consider the valuations μA as elements of Val(V) ⊗ Dens(V∗): given
A, B ∈ K(V), put

μA(B) := m(A + B) · m∗

for m, m∗ as above, which is clearly independent of choices. In this language Theorem
1.2 becomes

Theorem 1.4 There exists a continuous convolution product ∗ on Valsm(V)⊗Dens(V∗),
uniquely characterized by the condition that μA ∗ μB = μA+B for any A, B ∈ Ksm(V).
If φ, ψ ∈ Val+,sm(V) ⊗ Dens(V∗) then

φ ∗ ψ = D(D−1φ · D
−1ψ).

However, in the present paper we will continue to use the language of Theorem 1.2.

1.3.2 Applications

Alesker has shown that if G ⊂ O(V) is a compact subgroup acting transitively on
the sphere of V, then the vector space ValG of continuous, translation-invariant,
G-invariant valuations is finite dimensional. From this it is easy to show (cf. [13])

Proposition 1.5 Let ϕ1, . . . , ϕN be a basis for ValG and let ψ ∈ ValG. Then there exist
constants cψ

ij , 1 ≤ i, j ≤ N such that whenever A, B ∈ K(Rn)∫
G

ψ(A ∩ ḡB) dḡ =
∑

i,j

cψ

ij ϕi(A)ϕj(B). (15)

As before, G := G � V and dḡ is the Haar measure. The same argument from finite-
dimensionality applies also to yield the following “additive kinematic formula.”

5
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Proposition 1.6 There exist constants dψ

ij such that

∫
G

ψ(A + gB) dg =
∑

i,j

dψ

ij ϕi(A)ϕj(B) (16)

for all A, B ∈ K.

We encode these facts by defining the maps kG, aG: ValG → ValG ⊗ ValG

kG(ψ) :=
∑

i,j

cψ

ij ϕi ⊗ ϕj, (17)

aG(ψ) :=
∑

i,j

dψ

ij ϕi ⊗ ϕj, (18)

where the cψ

ij , dψ

ij are the constants from (15) and (16). Our first application of Theorem
1.2 relates these two formulas via D:

Theorem 1.7 Let G be as above, and suppose that ValG ⊂ Val+. Then

aG = (D ⊗ D) ◦ kG ◦ D. (19)

In other words the structure constants for the two comultiplications kG, aG are identi-
cal provided the bases are changed appropriately. In the case G = SO(n) the structure
constants had been computed by Hadwiger (cf. (52) below and [17]).

As a second application we recall the definitions of the “Lefschetz operators” used
in the two different forms of Alesker’s Hard Lefschetz Theorem for Val+,sm:


: Val∗ → Val∗−1,

L: Val∗ → Val∗+1

given by


(φ)(A) := d
dt

∣∣∣∣
t=0+

φ(A + tB),

L(φ) := μ1 · φ,

where B is the unit ball of V.

Corollary 1.8 For all φ ∈ Valsm,


(φ) = 2μn−1 ∗ φ

Corollary 1.9


|Val+,sm = 2D ◦ L ◦ D.

It follows that the two forms of the “hard Lefschetz theorem” for even valuations,
established by Alesker in [2] and [3], are equivalent.

6
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1.4 Generalities about kinematic formulas

We take this opportunity to clarify the relation between the product in ValG and the
kinematic operator kG, sketched in [13].

Let G be a subgroup of O(V), acting transitively on the unit sphere of V. We endow
G with the unique Haar measure of volume 1. The semidirect product Ḡ := G � V
is endowed with the product of Haar and Lebesgue measure. We denote by ValG(V)

the space of Ḡ-invariant valuations on V, i.e. the space of valuations that are both
translation invariant and G-invariant.

The best known case is G = SO(V), in which case the intrinsic volumes μ0, . . . , μn
span ValSO(V). We write ωn for the volume of the n-dimensional unit ball and (follow-
ing [15]) denote by

[
n
k

]
:=

(
n
k

)
ωn

ωkωn−k

the flag coefficient. The kinematic formula for G = SO(V) is (cf. [15])

kSO(V)(μk) =
∑

i+j=n+k

[
n + k

k

] [
n + k

i

]−1

μi ⊗ μj. (20)

More generally, the map kG: ValG → ValG ⊗ ValG from (17) is a cocommutative,
coassociative coproduct. It is compatible with Alesker’s product in the sense that

kG(ψ · φ) = (ψ ⊗ χ) · kG(φ) (21)

(cf. [13]). Denote by

mG: ValG ⊗ ValG → ValG

the multiplication map, and put

m∗
G: ValG∗ → ValG∗ ⊗ ValG∗

for its adjoint. Recall that Valn = ValGn is spanned by a choice of a Lebesgue measure
vol on V, where dim V = n.

Let vol∗ ∈ ValG∗ be the element such that 〈vol, vol∗〉 = 1 and vol∗ ⊥ ValGk for
k < n. Recall ([4]) that the graded algebra Valsm satisfies Poincaré duality. Restricting
to ValG, this means that the map p ∈ Hom(ValG, ValG∗) determined by

〈a, p(b)〉 ≡ 〈ab, vol∗〉

is an isomorphism of vector spaces. Thus, ValG is structurally similar to the coho-
mology algebra of a compact oriented manifold M. The following result states that
in this picture the kinematic formula is analogous to the linear injection H∗(M) →
H∗(M) ⊗ H∗(M) induced by the diagonal map and Poincaré duality.

7
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Theorem 1.10

( p ⊗ p) ◦ kG = m∗
G ◦ p. (22)

Proof If a, b, c ∈ ValG then

〈(p ⊗ p) ◦ kG(a), b ⊗ c〉 = 〈kG(a) · (b ⊗ c), vol∗ ⊗ vol∗〉, (23)

〈m∗
G ◦ p(a), b ⊗ c〉 = 〈abc, vol∗〉, (24)

so it is enough to show that the right hand sides of (23) and (24) agree.
In the case a = χ = 1 this is the content of [13], Theorem 2.6: if {di} is any basis for

ValG and {d∗
i } ⊂ ValG

∗
is the dual basis, then

kG(1) =
∑

i

di ⊗ p−1(d∗
i ).

If this basis includes c = d0, then 〈p−1(d∗
i ) · c, vol∗〉 = 〈d∗

i , c〉 = δi
0, so

〈kG(1) · b ⊗ c, vol∗ ⊗ vol∗〉 = 〈(c ⊗ p−1(c∗)) · (b ⊗ c), vol∗ ⊗ vol∗〉
= 〈(bc) ⊗ vol, vol∗ ⊗ vol∗〉
= 〈bc, vol∗〉.

Now the theorem follows from (21). �

2 Product and convolution

In this section we prove the main Theorem 1.2. The first part, characterizing the con-
volution for even valuations in terms of the Minkowski sum, will be proved in Sect.
2.1. The second part, extending the resulting product to all valuations regardless of
parity, is proved in 2.2.

2.1 Convolution for even valuations

Lemma 2.1 Let A ∈ Ksm(V) be symmetric about the origin. Then the Klain function
of the degree k component μA,k of μA is given by

KlμA,k(L) = μn−k(πL⊥A), L ∈ Grk(V).

Proof Let L ∈ Grk(V) and let BL(r) be a ball in L of radius r. Then

μA(BL(r)) = vol(BL(r) + A) (25)

= vol(BL(r) + πL⊥A) + o(rk) (26)

= μk(BL(r))μn−k(πL⊥A) + o(rk) (27)

as r → ∞. Since μk(BL(r)) = O(rk),

KlμA,k(L) = lim
r→∞

μA(BL(r))
μk(BL(r))

= μn−k(πL⊥A).

�

From this it is easy to deduce

8
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Corollary 2.2 Let W ⊂ V be an m-dimensional subspace, DW: Val+∗ (W) → Val+m−∗(W)

the duality operator in W, and rW: Val(V) → Val(W) the restriction map. Then

rW(DμA) = DW(μπW A). (28)

Put cos : Grk × Grk → R≥0 for the function cos(P, Q) := sin(P, Q⊥). Alternatively,
volk(πQ(A)) = cos(P, Q) volk(A) for A ⊂ P, or vice versa. In particular cos(P, Q) =
cos(Q, P).

Lemma 2.3 Let φ, ψ ∈ Val+,sm
k . Then

〈p(ψ), Dφ〉 =
∫

Grk(V)

Klψ(P) dmφ(P)

=
∫ ∫

cos(P, Q) dmψ(Q) dmφ(P). (29)

In particular

ψ · Dφ = Dψ · φ. (30)

Proof This is immediate from (9) and (11). �

Corollary 2.4

(D ⊗ D)(kG(χ)) = kG(χ).

Proof Observing that D∗ ◦ p = p ◦ D, Theorem 1.10 implies that

(D ⊗ D)(kG(χ)) = (D ⊗ D) ◦ (p−1 ⊗ p−1) ◦ m∗
G(vol∗)

= (p−1 ⊗ p−1) ◦ (D∗ ⊗ D
∗) ◦ m∗

G(vol∗). (31)

Meanwhile, given any φ, ψ ∈ ValG(V),

〈φ ⊗ ψ , (D∗ ⊗ D
∗) ◦ m∗

G(vol∗)〉 = 〈mG ◦ (D ⊗ D)(φ ⊗ ψ), vol∗〉
= 〈Dφ · Dψ , vol∗〉
= 〈φ · ψ , vol∗〉 (by (30))

= 〈φ ⊗ ψ , m∗
G vol∗〉.

Thus (D∗ ⊗ D∗) ◦ m∗
G(vol∗) = m∗

G(vol∗), so (31) becomes

(D ⊗ D)(kG(χ)) = (p−1 ⊗ p−1) ◦ m∗
G(vol∗) = kG(χ).

�

Proof (Proof of the first part of Theorem. 1.2)
Let A, B ∈ Ksm(V) be centrally symmetric. Let μA = ∑n

k=0 μA,k and μB =∑n
k=0 μB,k be the decompositions of μA and μB by degree of homogeneity, and

let mB,k be a smooth Crofton measure for μB,k. Then

DμA,n−k · DμB,k =
∫

Grk(V)

KlDμA,n−k(L) dmB,k(L) vol by (29)

=
∫

Grk(V)

volk(πL(A)) dmB,k(L) vol by Lemma 2.1

= μB,k(A) vol .

9
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Summing over k = 0, . . . , n,

(DμA · DμB)n =
n∑

k=0

μB,k(A) vol = μB(A) vol = vol(A + B) vol = (DμA+B)n. (32)

Now let W ⊂ V be an m-dimensional subspace. Corollary 2.2 implies that

rW(DμA · DμB) = rW(DμA) · rW(DμA)

= DWμπW A · DWμπW B

Applying (32) for the subspace W and using (28), we conclude that the degree m
component of this valuation is

(rW(DμA · DμB))m = (DWμπW (A+B))m

= (rW(DμA+B))m. (33)

Since this holds for all W ∈ Grm(V), we deduce that the Klain functions of (DμA ·
DμB)m and (DμA+B)m coincide for all m = 0, . . . , n. Therefore, DμA · DμB = DμA+B.

�

2.2 Convolution for odd valuations

As we have mentioned above, the convolution extends in a natural way to include
also the (smooth) odd valuations. Let us fix an orientation of V.

2.2.1 Representation of valuations by means of currents

Recall that a differential form on the sphere bundle SV is said to be vertical if it
annihilates the contact distribution of SV. For 0 ≤ k ≤ n − 1, put V

k for the space
of smooth, translation-invariant differential forms β of bidegree (k, n − k − 1) on SV
such that dβ is vertical. Put V := ⊕n−1

k=0 V
k .

The next statement is a special case of Theorem 5.2.1 of [5] and of the main theorem
of [11]. Let N(K) ∈ In−1(SV) be the normal cycle of K [19,10].

Lemma 2.5 If k �= n then the map ν: V
k → Valsm

k (V), given by

ν(β)(K) :=
∫

N(K)

β (34)

is surjective, with kernel

ker ν = {β ∈ V : β is exact}. (35)

Definition Let π1: SV → V and π2: SV → S(V) denote the canonical projections,
where S(V) is the unit sphere of V. Let ∗V be the Hodge star on the space ∗(V) of
differential forms on V, and let ∗1 be the linear operator on ∗(SV) which is uniquely
defined by

∗1 (π∗
1 γ1 ∧ π∗

2 γ2) = (−1)(
n−deg γ1

2 )π∗
1 (∗Vγ1) ∧ π∗

2 γ2, (36)

γ1 ∈ ∗(V), γ2 ∈ ∗(S(V)).

We define ∗1 on ∗(TV) in a similar way.

10
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Note that d∗1 = (−1)n ∗1 d on translation invariant forms and that ∗1 is, up to a

sign, an involution.
If β ∈ V

k , γ ∈ V
l put

β ∗̂ γ := (2n − k − l)−1 ∗−1
1 ((n − k) ∗1 β ∧ ∗1dγ + (n − l) ∗1 γ ∧ ∗1dβ)

≡ ∗−1
1 (∗1β ∧ ∗1dγ ) mod ker ν. (37)

Proposition 2.6 Extending by bilinearity, ∗̂ is a continuous, commutative, associative
product on V of degree −n, which descends to a continuous, commutative, associative
product ∗ on Valsm of degree −n by taking

ν(β) ∗ ν(γ ) := ν(β ∗̂ γ ), (38)

vol ∗φ := φ. (39)

The reader will observe that the definition in (38), (39) is a clear abuse of notation,
since for even valuations we defined ∗ differently in the last section. However, we
will see shortly (Proposition. 2.7 below) that the two definitions agree in this case, so
we hope the reader will tolerate this momentary formal ambiguity. Note also that ∗,
unlike ∗̂ , does not depend on the orientation of V.

Proof Commutativity and associativity may be verified via straightforward computa-
tions, taking into account that deg ∗1β is always odd for β ∈ V .

To see that ∗ in (38) is well defined it is enough to show that if β ∈ V is exact then
so is β ∗̂ γ for all γ ∈ V . However this follows at once from (37).

To prove continuity, let φ
j
1 → φ1, φj

2 → φ2 in Valsm. We may assume that the
degrees of all of these valuations are < n. Since the map V → Valsm

<n is surjective,
and is obviously continuous with respect to the C∞ topology on V , the open mapping
theorem implies that we can choose sequences β

j
1, β j

2 ∈ V representing φ
j
1, φj

2 and

converging to β1, β2 in the C∞ topology. Then β
j
1 ∗̂ β

j
2 → β1 ∗̂ β2 in C∞, and thus

φ
j
1 ∗ φ

j
2 → φ1 ∗ φ2. �

It remains to show

Proposition 2.7 If ∗ is defined as in (38), (39)then

μA ∗ μB = μA+B (40)

for all A, B ∈ Ksm.

Proof It will be convenient to use a variation on the representation (34) of valuations
as integrals over the normal cycle N. Thinking of N as analogous to the manifold of
unit normal vectors of a submanifold, we use instead the analogue of the bundle of
unit balls:

N1(K) :=N(K) � (V × B(0, 1)), K ∈ K, (41)

where N is the image under the identification TV � T∗V, induced by the euclidean
metric, of the conormal cycleN∗ of [9].

Let us put r(x, y) := |y| and p: TV \ V → SV, (x, y) 	→ (
x, y

r

)
. Given β ∈ V

k , let

β̃ :=
{

d
(
rn−k p∗β

)
, on TV \ V,

0, on V.
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Since β̃ is the differential of a Lipschitz form it defines a flat cochain in the sense of
[18] (cf. also [12], 4.1.19), and the usual form of Stokes’ theorem applies to give∫

N1(K)

β̃ =
∫

∂N1(K)

rn−kp∗β =
∫

N(K)

β = ν(β)(K) (42)

for all K ∈ K. Furthermore the volume valuation is given by

vol(K) =
∫

N1(K)

π∗
1 (d volV).

Put ̃V
k := {β̃ : β ∈ V

k } for k �= n, and ̃V
n := 〈π∗

1 volV〉; put ̃V := ⊕n
k=0 ̃V

k . Put
ν̃(β̃) for the left-hand side of (42). Thus ν̃: ̃V → Valsm is surjective. For φ, ψ ∈ ̃V

we put

φ ∗̃ψ := ∗−1
1 (∗1φ ∧ ∗1ψ).

Unwinding the definitions, if β, γ ∈ V then

β̃ ∗̃ γ̃ = β̃ ∗̂ γ . (43)

In particular, by (38), (39)

ν̃(φ) ∗ ν̃(ψ) = ν̃(φ ∗̃ψ) (44)

for all φ, ψ ∈ ̃V .

Lemma 2.8 Let θ be a translation-invariant form of bidegree (k, n − k) on TV. Then
θ ∈ ̃V

k iff θ is closed, homogeneous of degree n − k, and θ |SV is vertical.

Proof of lemma Suppose k < n and that θ has these properties. By homogeneity,

θ = d(rn−k) ∧ p∗β + rn−k p∗γ

for some forms β, γ on SV, where β has bidegree (k, n−k−1). If dθ = 0 then γ = dβ,
whence θ = d

(
rn−kp∗β

)
. The restriction of θ to SV is then equal to dβ, which is

therefore vertical, from which we conclude that β ∈ V
k and θ = β̃.

The converse, and the case k = n, are trivial. �

Returning to the proof of (40), given A ∈ Ksm we put hA: V → R for the support
function hA(y) := maxx∈A〈y, x〉 of A, put

η = η(y) :=
{

r∇hA(y), y �= 0,
0, y = 0

and define the Lipschitz map GA: TV → V by

GA(x, y) := x + η(y).

We claim that for any K ∈ K
GA∗N1(K) = [[K + A]]. (45)

Since GA∗: I∗(TV) → I∗(V) and N1: K → In(TV) are continuous (cf. [9,13]), it is
enough to prove this in the case that K ∈ Ksm. Furthermore, since the left-hand side
represents an integral current of top dimension with compact support, it is enough to

12
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show that GA∗N(K) = [[∂(K + A)]]. In this case, N(K) is given by integration over
{(x, nx) : x ∈ ∂K}, where nx is the unit outward normal to K at x. Thus, GA∗N(K) is
given by integration over the smooth hypersurface H := {x + ∇hA(nx) : x ∈ ∂K}. It is
easy to verify that nx is normal to H at GA(x, nx), and that

〈nx, GA(x, nx)〉 = 〈nx, x〉 + 〈nx, ∇hA(nx)〉
= hK(nx) + hA(nx)

= hK+A(nx).

This is sufficient to characterize H as ∂(K + A), as claimed. Therefore,

vol(K + A) =
∫

GA∗N1(K)

d volV =
∫

N1(K)

G∗
A(d volV). (46)

We claim that θA := G∗
A(d volV) ∈ ̃V . Appealing to Lemma 2.8, it is clear that in

the decomposition of θA by bidegree the components are all closed and of the correct
homogeneity. It remains only to show that θA|SV is vertical, i.e. that α ∧ θA|SV = 0,
where α(x, y) = ∑n

i=1 yi dxi is the canonical 1-form.
Since hA is homogeneous of degree 1 it follows that

∑
i yidηi|SV = 0, and we

establish the claim by computing

α ∧ θA|SV =
(∑

i

yidxi

)
∧ G∗

A(d volV)|SV

=
(∑

i

yi (dxi + dηi)

)
∧ G∗

A(d volV)|SV

=
(∑

i

yi(G∗
Adxi)

)
∧ G∗

A(d volV)|SV

=
∑

i

yiG∗
A (dxi ∧ d volV) |SV

= 0.

Thus, μA = ν̃(θA), and since

θA :=
n∧

i=1

G∗
Adxi =

n∧
i=1

(dxi + dηi)

a straightforward computation using (36) reveals that

∗1 θA =
n∧

i=1

(1 + dxi ∧ dηi). (47)
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Therefore, if B ∈ Ksm and ζ := r∇hB(y) then

∗1(θA ∗̃ θB) = ∗1θA ∧ ∗1θB

=
n∧

i=1

(1 + dxi ∧ dηi) ∧ (1 + dxi ∧ dζi)

=
n∧

i=1

(1 + dxi ∧ (dηi + dζi))

= ∗1θA+B

since η + ζ = r(∇hA + ∇hB) = r∇hA+B. Therefore, θA ∗̃ θB = θA+B, which with (44)
completes the proof. �

Let us denote by σ̃: Valsm → Valsm the involution defined by σ̃ φ(K) := φ(−K) (σ̃
agrees up to a sign with the Euler–Verdier involution σ introduced in [6]). Note that
even valuations are fixed by σ̃ and that σ̃μA = μ−A. Relation (30) may be rewritten
as φ · ψ = D(φ ∗ σ̃ψ) for φ, ψ even and of complementary degrees. In this form, this
formula holds for all smooth valuations:

Corollary 2.9 For φ ∈ Valsm
k (V), ψ ∈ Valsm

n−k(V),

φ · ψ = D(φ ∗ σ̃ψ). (48)

Proof An equivalent formulation of (48) is that for arbitrary φ, ψ ∈ Valsm(V), the
highest degree part of φ ·ψ equals the lowest degree part of φ ∗ σ̃ψ . By continuity and
linearity it suffices to show this for φ = μA and ψ = μB with A, B ∈ Ksm. The lowest
degree component of μA ∗ σ̃μB = μA−B obviously equals vol(A − B)χ . On the other
hand, by (6) the highest degree component of μA · μB is vol(A − B) vol. �

2.3 An alternative formulation

Proof of Corollary 1.3 By definition of the mixed volume,

VA1,...,An−k = k!
n!

∂n−k

∂t1 . . . ∂tn−k

∣∣∣∣∣
t=0

μ∑n−k
i=1 tiAi

,

VB1,...,Bn−l = l!
n!

∂n−l

∂s1 . . . ∂sn−l

∣∣∣∣∣
s=0

μ∑n−l
j=1 sjBj

,

from which we deduce (using (13) and continuity) that

VA1,...,An−k ∗ VB1,...,Bn−l = k!l!
n!2

∂n−k

∂t1 . . . ∂tn−k

∣∣∣∣∣
t=0

∂n−l

∂s1 . . . ∂sn−l

∣∣∣∣∣
s=0

μ∑n−k
i=1 tiAi+∑n−l

j=1 sjBj

=
(

k + l
k

)−1(k + l
n

)
VA1,...,An−k,B1,...,Bn−l .

�
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3 Proofs of Theorem 1.7 and Corollary 1.8

Proof of Theorem 1.7 We claim first that

aG(ψ ∗ φ) = (ψ ⊗ vol) ∗ aG(φ) = (vol ⊗ψ) ∗ aG(φ), (49)

for ψ , φ ∈ ValG(V). The valuations μG
L defined by

μG
L (K) =

∫
G

vol(K + gL) dg,

L ∈ Ksm(V), span ValG(V). It thus suffices to show (49) for ψ = μG
L , in which case we

compute

aG(μG
L ∗ φ)(A, B) =

∫
G

μG
L ∗ φ(A + gB) dg

=
∫

G

∫
G

φ(A + gB + hL) dh dg

=
∫

G

∫
G

φ(A + gB + hL) dg dh

=
∫

G

N∑
i,j=1

dφ

i,jϕi(A + hL)ϕj(B) dh

=
N∑

i,j=1

dφ

i,j(μ
G
L ∗ ϕi)(A)(vol ∗ϕj)(B)

= (μG
L ⊗ vol) ∗ aG(φ)(A, B),

which is the first equation of (49), and the second follows similarly.
To prove (19) we compute

aG(vol)(A, B) =
∫

G
vol(A + gB)dg =

∫
Ḡ

χ(A ∩ dg)dg = kG(χ)(A, B)

= (D ⊗ D)(kG(χ))(A, B)

by Corollary 2.4. In other words, both sides of (19) give the same result when evaluated
on the valuation vol. Now (49) and (21) yield

aG(φ) = aG(φ ∗ vol)

= (φ ⊗ vol) ∗ aG(vol)

= (D ⊗ D)((Dφ ⊗ χ) · kG(χ))

= (D ⊗ D)(kG(Dφ))

as claimed. �

Remarks (1) Let cG : ValG ⊗ ValG → ValG denote the convolution map, determined
by

cG(ϕ ⊗ ψ) := ϕ ∗ ψ .

Using the fact that the relation (30) may be stated

p ◦ D = D
∗ ◦ p, (50)
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it is easy to deduce that, analogously to Theorem 1.10,

(p ⊗ p) ◦ aG = c∗
G ◦ p. (51)

(2) Theorem 1.7 says that the coefficients for the additive kinematic formulas in a
given basis are the same as the coefficients of the ordinary kinematic formulas for the
Alesker dual basis. For instance, if G = SO(V) then

aSO(V)(μk) = (D ⊗ D)kSO(V)(μn−k)

=
[

2n − k
n − k

] ∑
i+j=2n−k

[
2n − k

i

]−1

D(μi) ⊗ D(μj)

=
[

2n − k
n − k

] ∑
i+j=k

[
2n − k
n − i

]−1

μi ⊗ μj

yielding the following formula of Hadwiger (cf. [17]):∫
SO(V)

μk(A + gB)dg =
[

2n − k
n − k

] ∑
i+j=k

[
2n − k
n − i

]−1

μi(A)μj(B) (52)

for A, B ∈ K(V).

Proof of Corollary 1.8 Let B be the unit ball and r > 0. By Steiner’s formula,

μrB(K) = vol(K + rB) =
n∑

i=0

μn−i(K)ωiri,

from which we deduce that d
dr

∣∣∣
r=0

μrB = 2μn−1. For φ ∈ Valsm(V) it follows that


φ = d
dr

∣∣∣∣
r=0

φ(· + rB) = d
dr

∣∣∣∣
r=0

μr B ∗ φ = 2μn−1 ∗ φ. (53)
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