4,177 research outputs found

    Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures

    Get PDF
    The electronic spin state of Fe^(2+) in ferropericlase, (Mg_(0.75)Fe_(0.25))O, transitions from a high-spin (spin unpaired) to low-spin (spin paired) state within the Earth’s mid-lower mantle region. To better understand the local electronic environment of high-spin Fe^(2+) ions in ferropericlase near the transition, we obtained synchrotron Mössbauer spectra (SMS) of (Mg_(0.75),Fe_(0.25))O in externally heated and laser-heated diamond anvil cells at relevant high pressures and temperatures. Results show that the quadrupole splitting (QS) of the dominant high-spin Fe^(2+) site decreases with increasing temperature at static high pressure. The QS values at constant pressure are fitted to a temperature-dependent Boltzmann distribution model, which permits estimation of the crystal-field splitting energy (Δ_3) between the d_(xy_ and d_(xz) or d_(zy) orbitals of the t_(2g) states in a distorted octahedral Fe^(2+) site. The derived Δ_3 increases from approximately 36 meV at 1 GPa to 95 meV at 40 GPa, revealing that both high pressure and high temperature have significant effects on the 3d electronic shells of Fe^(2+) in ferropericlase. The SMS spectra collected from the laser-heated diamond cells within the time window of 146 ns also indicate that QS significantly decreases at very high temperatures. A larger splitting of the energy levels at high temperatures and pressures should broaden the spin crossover in ferropericlase because the degeneracy of energy levels is partially lifted. Our results provide information on the hyperfine parameters and crystal-field splitting energy of high-spin Fe^(2+) in ferropericlase at high pressures and temperatures, relevant to the electronic structure of iron in oxides in the deep lower mantle

    Thermodynamical fingerprints of fractal spectra

    Full text link
    We investigate the thermodynamics of model systems exhibiting two-scale fractal spectra. In particular, we present both analytical and numerical studies on the temperature dependence of the vibrational and electronic specific heats. For phonons, and for bosons in general, we show that the average specific heat can be associated to the average (power law) density of states. The corrections to this average behavior are log-periodic oscillations which can be traced back to the self-similarity of the spectral staircase. In the electronic case, even if the thermodynamical quantities exhibit a strong dependence on the particle number, regularities arise when special cases are considered. Applications to substitutional and hierarchical structures are discussed.Comment: 8 latex pages, 9 embedded PS figure

    Bounce and cyclic cosmology in extended nonlinear massive gravity

    Full text link
    We investigate non-singular bounce and cyclic cosmological evolutions in a universe governed by the extended nonlinear massive gravity, in which the graviton mass is promoted to a scalar-field potential. The extra freedom of the theory can lead to certain energy conditions violations and drive cyclicity with two different mechanisms: either with a suitably chosen scalar-field potential under a given Stuckelberg-scalar function, or with a suitably chosen Stuckelberg-scalar function under a given scalar-field potential. Our analysis shows that extended nonlinear massive gravity can alter significantly the evolution of the universe at both early and late times.Comment: 20 pages, 5 figures, version published at JCA

    Exciton spin relaxation in single semiconductor quantum dots

    Full text link
    We study the relaxation of the exciton spin (longitudinal relaxation time T1T_{1}) in single asymmetrical quantum dots due to an interplay of the short--range exchange interaction and acoustic phonon deformation. The calculated relaxation rates are found to depend strongly on the dot size, magnetic field and temperature. For typical quantum dots and temperatures below 100 K, the zero--magnetic field relaxation times are long compared to the exciton lifetime, yet they are strongly reduced in high magnetic fields. We discuss explicitly quantum dots based on (In,Ga)As and (Cd,Zn)Se semiconductor compounds.Comment: accepted for Phys. Rev.

    Dynamics of a deformable self-propelled particle under external forcing

    Full text link
    We investigate dynamics of a self-propelled deformable particle under external field in two dimensions based on the model equations for the center of mass and a tensor variable characterizing deformations. We consider two kinds of external force. One is a gravitational-like force which enters additively in the time-evolution equation for the center of mass. The other is an electric-like force supposing that a dipole moment is induced in the particle. This force is added to the equation for the deformation tensor. It is shown that a rich variety of dynamics appears by changing the strength of the forces and the migration velocity of self-propelled particle

    Critical Structure Sparing in Stereotactic Ablative Radiotherapy for Central Lung Lesions: Helical Tomotherapy vs. Volumetric Modulated Arc Therapy

    Get PDF
    Background Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. Methods 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated. Results HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. Conclusion HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing

    DeepReg: a deep learning toolkit for medical image registration

    Get PDF
    Image fusion is a fundamental task in medical image analysis and computer-assisted intervention. Medical image registration, computational algorithms that align different images together (Hill et al., 2001), has in recent years turned the research attention towards deep learning. Indeed, the representation ability to learn from population data with deep neural networks has opened new possibilities for improving registration generalisability by mitigating difficulties in designing hand-engineered image features and similarity measures for many realworld clinical applications (Fu et al., 2020; Haskins et al., 2020). In addition, its fast inference can substantially accelerate registration execution for time-critical tasks. DeepReg is a Python package using TensorFlow (Abadi et al., 2015) that implements multiple registration algorithms and a set of predefined dataset loaders, supporting both labelledand unlabelled data. DeepReg also provides command-line tool options that enable basic and advanced functionalities for model training, prediction and image warping. These implementations, together with their documentation, tutorials and demos, aim to simplify workflows for prototyping and developing novel methodology, utilising latest development and accessing quality research advances. DeepReg is unit tested and a set of customised contributor guidelines are provided to facilitate community contributions. A submission to the MICCAI Educational Challenge has utilised the DeepReg code and demos to explore the link between classical algorithms and deep-learning-based methods (Montana Brown et al., 2020), while a recently published research work investigated temporal changes in prostate cancer imaging, by using a longitudinal registration adapted from the DeepReg code (Yang et al., 2020)

    First Measurement of the Branching Fraction of the Decay psi(2S) --> tau tau

    Full text link
    The branching fraction of the psi(2S) decay into tau pair has been measured for the first time using the BES detector at the Beijing Electron-Positron Collider. The result is Bττ=(2.71±0.43±0.55)×103B_{\tau\tau}=(2.71\pm 0.43 \pm 0.55) \times 10^{-3}, where the first error is statistical and the second is systematic. This value, along with those for the branching fractions into e+e- and mu+mu of this resonance, satisfy well the relation predicted by the sequential lepton hypothesis. Combining all these values with the leptonic width of the resonance the total width of the psi(2S) is determined to be (252±37)(252 \pm 37) keV.Comment: 9 pages, 2 figure

    A Carbon Nanofilament-Bead Necklace

    Get PDF
    Carbon nanofilaments with carbon beads grown on their surfaces were successfully synthesized reproducibly by a floating catalyst CVD method. The nanofilaments hosting the pearl-like structures typically show an average diameter of about 60 nm, which mostly consists of low-ordered graphite layers. The beads with diameter range 150−450 nm are composed of hundreds of crumpled and random graphite layers. The mechanism for the formation of these beaded nanofilaments is ascribed to two nucleation processes of the pyrolytic carbon deposition, arising from a temperature gradient between different parts of the reaction chamber. Furthermore, the Raman scattering properties of the beaded nanofilaments have been measured, as well as their confocal Raman G-line images. The Raman spectra reveal that that the trunks of the nanofilaments have better graphitic properties than the beads, which is consistent with the HRTEM analysis. The beaded nanofilaments are expected to have high potential applications in composites, which should exhibit both particle- and fiber-reinforcing functions for the host matrixes

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
    corecore