223 research outputs found

    Linking Rates of Diffusion and Consumption in Relationto Resources

    Get PDF
    The functional response is a fundamental model of the relationship between consumer intake rate and resource abundance. The random walk is a fundamental model of animal movement and is well approximated by simple diffusion. Both models are central to our understanding of numerous ecological processes but are rarely linked in ecological theory. To derive a synthetic model, we draw on the common logical premise underlying these models and show how the diffusion and consumption rates of consumers depend on elementary attributes of naturally occurring consumer-resource interactions: the abundance, spatial aggregation, and traveling speed of resources as well as consumer handling time and directional persistence. We show that resource aggregation may lead to increased consumer diffusion and, in the case of mobile resources, reduced consumption rate. Resource-dependent movement patterns have traditionally been attributed to area-restricted search, reflecting adaptive decision making by the consumer. Our synthesis provides a simple alternative hypothesis that such patterns could also arise as a by-product of statistical movement mechanics

    Why Are We Not Evaluating Multiple CompetingHypotheses in Ecology and Evolution?

    Get PDF
    The use of multiple working hypotheses to gain strong inference is widely promoted as a means to enhance the effectiveness of scientific investigation. Only 21 of 100 randomly selected studies from the ecological and evolutionary literature tested more than one hypothesis and only eight tested more than two hypotheses. The surprising rarity of application of multiple working hypotheses suggests that this gap between theory and practice might reflect some fundamental issues. Here, we identify several intellectual and practical barriers that discourage us from using multiple hypotheses in our scientific investigation. While scientists have developed a number of ways to avoid biases, such as the use of double-blind controls, we suspect that few scientists are fully aware of the potential influence of cognitive bias on their decisions and they have not yet adopted many techniques available to overcome intellectual and practical barriers in order to improve scientific investigation

    On the Scale Dependence of Foraging in Terrestrial Herbivores

    Get PDF
    Meaningful modeling of the spatial and trophic dynamics of terrestrial herbivores demands understanding of the constraints and fitness objectives that presumably underlie behavior. This is complex in terrestrial herbivores, because of scale-dependent constraints on nutrient or energy gain. Mechanistic processes of forage cropping, forage mastication, movements between feeding stations, and forage digestion each have unique constraints that apply on different time, size, and spatial scales. Moreover, competing activities are rarely taken into account. Experimental testing of foraging objectives is therefore clouded by uncertainty regarding which time scale is most relevant from the animal’s perspective, leading to confusion and misrepresentation in the foraging literature. We illustrate these arguments from both theoretical and empirical points of view, based on our work with wild ungulates as well as the contemporary literature

    Genetic isolation by distance and landscape connectivity in the American marten ( Martes americana )

    Get PDF
    Empirical studies of landscape connectivity are limited by the difficulty of directly measuring animal movement. ‘Indirect' approaches involving genetic analyses provide a complementary tool to ‘direct' methods such as capture-recapture or radio-tracking. Here the effect of landscape on dispersal was investigated in a forest-dwelling species, the American marten (Martes americana) using the genetic model of isolation by distance (IBD). This model assumes isotropic dispersal in a homogeneous environment and is characterized by increasing genetic differentiation among individuals separated by increasing geographic distances. The effect of landscape features on this genetic pattern was used to test for a departure from spatially homogeneous dispersal. This study was conducted on two populations in homogeneous vs. heterogeneous habitat in a harvested boreal forest in Ontario (Canada). A pattern of IBD was evidenced in the homogeneous landscape whereas no such pattern was found in the near-by harvested forest. To test whether landscape structure may be accountable for this difference, we used effective distances that take into account the effect of landscape features on marten movement instead of Euclidean distances in the model of isolation by distance. Effective distances computed using least-cost modeling were better correlated to genetic distances in both landscapes, thereby showing that the interaction between landscape features and dispersal in Martes americana may be detected through individual-based analyses of spatial genetic structure. However, the simplifying assumptions of genetic models and the low proportions in genetic differentiation explained by these models may limit their utility in quantifying the effect of landscape structur

    Characterizing DemographicParameters Across Environmental Gradients: A Case Study With Ontario Moose

    Get PDF
    Population-level demographic characteristics as estimated by standard logistic growth models (i.e., carrying capacity and intrinsic growth rate) should vary with changes in habitat quality and availability of resources. However, few published studies have tested this hypothesis by comparing population growth rates across broad bioclimatic gradients, and fewer still the carrying capacities of those populations. We used time series data on moose (Alces alces) population densities based on aerial census and hunter harvest data for 34 management units across Ontario to estimate local carrying capacities and intrinsic growth rates. These population parameters were then regressed against associated habitat covariates for each management unit to assess how moose demography changes across a broad gradient of productivity, habitat abundance, and timber harvest. Moose carrying capacity was found to increase with increasing forest productivity as measured by DNDVI and the proportion of mixedwood stands in the forest. Both variables are plausibly indicative of high quality forage abundance for moose. Moose carrying capacity decreased with the proportion of forest stands harvested for timber annually, suggesting that immediate removal of forest stands and increased access by hunters temper maximum population size. Maximum rates of population growth by Ontario moose did not vary predictably with any of the landscape covariates tested. These findings contribute to our understanding of changes in demography across broad geographic and bioclimatic gradients and suggest that crude population estimators may be derived based on known habitat preferences and resource availability without a priori knowledge of animal abundance. (PDF) Characterizing demographic parameters across environmental gradients: A case study with Ontario moose (Alces alces). Available from: https://www.researchgate.net/publication/280936410_Characterizing_demographic_parameters_across_environmental_gradients_A_case_study_with_Ontario_moose_Alces_alces [accessed Oct 29 2018]

    Temperature Triggers a Non-Linear Response in Resource–Consumer Interaction Strength

    Get PDF
    Although temperature is recognized as a major determinant of many ecological processes, it is still not clear whether temperature increase caused by climate change will strengthen or weaken species interactions. One hypothesis is that interactions will respond non‐monotonically to temperature because thermal performance curves, which determine the strength of these interactions, are also non‐monotonic. To evaluate this hypothesis, we developed a temperature‐dependent consumer–resource model and tested predictions from this model in large freshwater mesocosms populated with green algae (Chlorella vulgaris) and herbivorous zooplankton (Daphnia magna). We found both in the model simulations and empirical investigations that the suppressive effect of the consumer depended non‐monotonically on the temperature. As predicted by the model, Daphnia suppressed the algal maximum per capita growth rate at the temperature that maximized algal growth rate but had little effect on resource growth at either lower or higher temperatures. This finding could help explain why effects of temperature variation on species interaction are variable in the literature and suggests that predicting the effects of temperature on the strength of food web interactions requires knowledge of the thermal performance curves for multiple traits, for multiple species and over a range of temperatures

    Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna

    Get PDF
    Reduced body size and accelerated life cycle due to warming are considered major ecological responses to climate change with fitness costs at the individual level. Surprisingly, we know little about how relevant ecological factors can alter these life history trade‐offs and their consequences for individual fitness. Here, we show that food modulates temperature‐dependent effects on body size in the water flea Daphnia magna and interacts with temperature to affect life history parameters. We exposed 412 individuals to a factorial manipulation of food abundance and temperature, tracked each reproductive event, and took daily measurements of body size from each individual. High temperature caused a reduction in maximum body size in both food treatments, but this effect was mediated by food abundance, such that low food conditions resulted in a reduction of 20% in maximum body size, compared with a reduction of 4% under high food conditions. High temperature resulted in an accelerated life cycle, with pronounced fitness cost at low levels of food where only a few individuals produced a clutch. These results suggest that the mechanisms affecting the trade‐off between fast growth and final body size are food‐dependent, and that the combination of low levels of food and high temperature could potentially threaten viability of ectotherms

    The Pollution of Pristine Material in Compressible Turbulence

    Full text link
    The first generation of stars had very different properties than later stellar generations, as they formed from a "pristine" gas that was free of heavy elements. Normal star formation took place only after the first stars polluted the surrounding turbulent interstellar gas, increasing its local heavy element concentration, Z, beyond a critical value, Z_c (10^-8 < Z_c <10^-5). Motivated by this astrophysical problem, we investigate the fundamental physics of the pollution of pristine fluid elements in isotropic compressible turbulence. Turbulence stretches the pollutants, produces concentration structures at small scales, and brings the pollutants and the unpolluted flow in closer contact. Our theoretical approach employs the probability distribution function (PDF) method for turbulent mixing. We adopt three PDF closure models and derive evolution equations for the pristine fraction from the models. To test and constrain the theoretical models, we conduct numerical simulations for decaying passive scalars in isothermal turbulent flows with Mach numbers of 0.9 and 6.2, and compute the mass fraction, P(Z_c, t), of the flow with Z < Z_c. In the Mach 0.9 flow, the evolution of P(Z_c, t)$ is well described by a continuous convolution model and dP(Z_c, t)/dt = P(Z_c, t) ln[P(Z_c, t)]/tau_con, if the mass fraction of the polluted flow is larger than ~ 0.1. If the initial pollutant fraction is smaller than ~ 0.1, an early phase exists during which the pristine fraction follows an equation from a nonlinear integral model: dP(Z_c, t)/dt = P(Z_c, t) [P(Z_c, t)-1]/tau_int. The timescales tau_con and tau_int are measured from our simulations. When normalized to the flow dynamical time, the decay of P(Z_ c, t) in the Mach 6.2 flow is slower than at Mach 0.9, and we show that P(Z_c, t) in the Mach 6.2 flow can be well fit using a formula from a generalized version of the self-convolution model.Comment: 30 pages, 8 figure. Accepted by Journal of Fluid Mechanic

    Human Activity Mediates a Trophic Cascade Caused by Wolves

    Get PDF
    Experimental evidence of trophic cascades initiated by large vertebrate predators is rare in terrestrial ecosystems. A serendipitous natural experiment provided an opportunity to test the trophic cascade hypothesis for wolves (Canis lupus) in Banff National Park, Canada. The first wolf pack recolonized the Bow Valley of Banff National Park in 1986. High human activity partially excluded wolves from one area of the Bow Valley (low-wolf area), whereas wolves made full use of an adjacent area (high-wolf area). We investigated the effects of differential wolf predation between these two areas on elk (Cervus elaphus) population density, adult female survival, and calf recruitment; aspen (Populus tremuloides) recruitment and browse intensity; willow (Salix spp.) production, browsing intensity, and net growth; beaver (Castor canadensis) density; and riparian songbird diversity, evenness, and abundance. We compared effects of recolonizing wolves on these response variables using the log response ratio between the low-wolf and high-wolf treatments. Elk population density diverged over time in the two treatments, such that elk were an order of magnitude more numerous in the low-wolf area compared to the high-wolf area at the end of the study. Annual survival of adult female elk was 62% in the high-wolf area vs. 89% in the low-wolf area. Annual recruitment of calves was 15% in the high-wolf area vs. 27% without wolves. Wolf exclusion decreased aspen recruitment, willow production, and increased willow and aspen browsing intensity. Beaver lodge density was negatively correlated to elk density, and elk herbivory had an indirect negative effect on riparian songbird diversity and abundance. These alternating patterns across trophic levels support the wolf-caused trophic cascade hypothesis. Human activity strongly mediated these cascade effects, through a depressing effect on habitat use by wolves. Thus, conservation strategies based on the trophic importance of large carnivores have increased support in terrestrial ecosystems. Read More: http://www.esajournals.org/doi/full/10.1890/04-126

    ‘You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals

    Get PDF
    1. Impediments to animal movement are ubiquitous and vary widely in both scale and permeability. It is essential to understand how impediments alter ecological dynamics via their influence on animal behavioural strategies governing space use and, for anthropogenic features such as roads and fences, how to mitigate these effects to effectively manage species and landscapes.2. Here, we focused primarily on barriers to movement, which we define as features that cannot be circumnavigated but may be crossed. Responses to barriers will be influenced by the movement capabilities of the animal, its proximity to the barriers, and habitat preference. We developed a mechanistic modelling framework for simultaneously quantifying the permeability and proximity effects of barriers on habitat preference and movement.3. We used simulations based on our model to demonstrate how parameters on movement, habitat preference and barrier permeability can be estimated statistically. We then applied the model to a case study of road effects on wild mountain reindeer summer movements.4. This framework provided unbiased and precise parameter estimates across a range of strengths of preferences and barrier permeabilities. The quality of permeability estimates, however, was correlated with the number of times the barrier is crossed and the number of locations in proximity to barriers. In the case study we found that reindeer avoided areas near roads and that roads are semi-permeable barriers to movement. There was strong avoidance of roads extending up to c. 1 km for four of five animals, and having to cross roads reduced the probability of movement by 68·6% (range 3·5–99·5%).5. Human infrastructure has embedded within it the idea of networks: nodes connected by linear features such as roads, rail tracks, pipelines, fences and cables, many of which divide the landscape and limit animal movement. The unintended but potentially profound consequences of infrastructure on animals remain poorly understood. The rigorous framework for simultaneously quantifying movement, habitat preference and barrier permeability developed here begins to address this knowledge gap
    • 

    corecore