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abstract: The functional response is a fundamental model of the
relationship between consumer intake rate and resource abundance.
The random walk is a fundamental model of animal movement and
is well approximated by simple diffusion. Both models are central
to our understanding of numerous ecological processes but are rarely
linked in ecological theory. To derive a synthetic model, we draw on
the common logical premise underlying these models and show how
the diffusion and consumption rates of consumers depend on ele-
mentary attributes of naturally occurring consumer-resource inter-
actions: the abundance, spatial aggregation, and traveling speed of
resources as well as consumer handling time and directional persis-
tence. We show that resource aggregation may lead to increased
consumer diffusion and, in the case of mobile resources, reduced
consumption rate. Resource-dependent movement patterns have tra-
ditionally been attributed to area-restricted search, reflecting adaptive
decision making by the consumer. Our synthesis provides a simple
alternative hypothesis that such patterns could also arise as a by-
product of statistical movement mechanics.

Keywords: functional response, random walk, area-restricted search,
consumer resource, diffusion, predator-prey.

Introduction

A major purpose of animal movement is to acquire re-
sources. Indeed, several recent theoretical studies of move-
ment, such as studies of Lévy walks or multiphasic random
walks, focus on adaptive movement strategies that increase
and perhaps even maximize the rate of resource encounter
(Grünbaum 1998; Benhamou 2007; Bartumeus et al. 2008;
James et al. 2008; Reynolds and Rhodes 2009). Despite the
intimate relationship between the study of animal move-
ment and that of consumer-resource interactions, formal
links between the two fields are rare, perhaps due to the
enormous complexity inherent in spatially explicit
processes.

Simple kinetic mechanisms (e.g., klinokinesis and or-
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thokinesis; Gunn 1975; Benhamou and Bovet 1989) are
extremely useful in linking consumer movement rates to
local resource abundance and thus in predicting the spatial
distribution of consumers in a heterogeneous environment
(Patlak 1953; Turchin 1991; Wilson and Richards 2000).
However, the explicit mechanism underlying the regula-
tion of speed or turn frequency in response to resources
is often not postulated, thus hampering our ability to de-
rive the process from first principles. An exception is a
study by Kareiva and Odell (1987; followed by a theoretical
investigation by Grünbaum 1998), which provided an em-
pirically derived functional relationship between turn fre-
quency and satiety. Here we take an alternative approach,
one based on the common logic underlying two funda-
mental ecological models (Turchin 2001), the functional
response and the random walk. Our aim is to provide a
fresh perspective on the mechanistic relationship between
rates of movement and consumption and to argue that
naturally occurring movement patterns might be usefully
viewed in light of this relationship.

The functional response relates a consumer’s intake rate
to the availability of resources (Solomon 1949). This con-
cept is fundamental to our understanding of many eco-
logical and evolutionary processes, such as optimal for-
aging, population regulation, and food web stability
(Oaten and Murdoch 1975; Dunbrack and Giguere 1987;
Turchin 2001). An explicit mathematical form of the func-
tional response was formulated independently by Holling
(1959) and by Rashevsky (1959). Although many alter-
native mathematical formulations have been suggested
(e.g., Abrams and Ginzburg 2000; Jeschke et al. 2002 and
references therein), Holling’s type I and II are the most
common forms observed in real systems, having been doc-
umented dozens of times (Jeschke et al. 2002). Both func-
tional-response equations rely on the implicit assumption
that the rate of resource encounter (per unit search time)
is constant over space and time. Hence, consumers are
assumed to travel through a field of randomly distributed
resources at a constant speed, with straight, randomly ori-
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Linking Rates of Diffusion and Consumption 183

ented trajectories between sequential resource encounters
(McKenzie et al. 2009). Indeed, paths of straight move-
ment with appreciable distances have been documented
in several organisms in a variety of different habitats (Tur-
chin 1998), including army ants in Panama’s rain forest
(Franks and Fletcher 1983), elk in Canada’s boreal forests
(Morales et al. 2004), and various marine predators (Sims
2008).

The most fundamental model of animal movement is
the random (or Brownian) walk (Codling et al. 2008; Na-
than et al. 2008), which assumes that animals move
through space in a series of straight, randomly oriented
steps (Berg 1983; Kareiva and Shigesada 1983; Turchin
1998; Codling et al. 2008). The assumptions underlying
the random-walk model are therefore identical to those
governing consumer search rate in functional-response
models. Diffusion is a continuum approximation of the
discrete random-walk process, where the diffusion coef-
ficient is the determining metric describing the rate of
population spread (Turchin 1998). In many applications,
the diffusion coefficient is assumed to be constant. How-
ever, if diffusion rates vary with local environmental con-
ditions, the resultant spatial distribution of the population
would reflect the underlying pattern of environmental het-
erogeneity (Patlak 1953; Cosner 2005). Hence, the diffu-
sion approximation provides a crucial link among the be-
havior of individual consumers, spatial heterogeneity of
resources, and the resulting spatial distribution of the con-
sumer population (Turchin 1991; Cosner 2005). We use
the logical linkage between the random-walk model and
the functional-response model to derive the diffusion co-
efficient of a consumer as functions of the abundance,
spatial aggregation, and traveling speed of resources as well
as of consumer directional persistence.

Models

Using both analytical and simulation methods, we explore
several possible scenarios involving consumer-resource in-
teractions that are broadly representative of many real or-
ganisms. In the first scenario, which is simple enough to
allow a closed-form solution of the model, we consider
static resources that are distributed randomly in space.
Consumers are assumed to travel along straight paths until
they encounter a resource item, at which point a new travel
direction is randomly sampled from a uniform distribu-
tion. In the second scenario, which also allows a closed-
form solution, we assume that both resources and con-
sumers are mobile, moving in randomly oriented but
straight paths across a featureless landscape. The third sce-
nario, which requires computer simulation rather than a
closed-form solution, relaxes the assumption of a uniform
random resource distribution, comparing outcomes for

various levels of spatial aggregation of resources. The
fourth scenario relaxes the assumption of straight move-
ment paths by the consumer, assuming instead that con-
sumers travel according to a correlated random walk
(CRW) with a varying degree of directional persistence.
This scenario reflects the realistic attribute that animal
movement paths are often rather convoluted even when
foraging is not involved (Turchin 1998; Nathan et al.
2008).

Scenario I: Randomly Distributed, Static Resources

Simple random walks are characterized by a linear increase
of an individual’s squared displacement over time. The
expectation for this squared displacement, , after time2E(R )
t, can be expressed as a function of the mean duration of
a single step, , and the mean squared step length,E(Dt)

:2E(x )

t
2 2E(R ) p E(x ). (1)

E(Dt)

We accordingly derive the expected squared displacement
of a consumer by expressing and as functions2E(Dt) E(x )
of resource density.

As in Holling’s (1959) functional-response models, we
assume that consumption events occur whenever a re-
source item falls within the perception range of a consumer
moving in straight lines. We further assume that the con-
sumer’s trajectory is truncated when it encounters a re-
source item, and thus it performs an instantaneous ran-
dom reorientation after each encounter.

The elapsed time between consecutive encounters of
such a consumer, moving at a constant speed, with ran-
domly distributed, immobile resources is exponentially
distributed with rate parameter . This rate parameterlDt

is the product of the effective radius (or the perception
range) r, the speed of the consumer , and the resourcev
density r:

l p 2rvr. (2)Dt

Note that is also known as the attack rate, sensu Hol-2rv
ling (1959). This derivation holds even if the speed is
variable, as long as it is sampled from a Maxwell-Boltz-
mann distribution with mean (Hutchinson and Waserv
2007).

The expected time between successive encounters is

1
E(Dt) p . (3)

2rvr

If the consumer handles each encountered resource item
for a time h before renewing its search, then the expected
time between successive encounters is
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1
E(Dt) p � h. (4)

2rvr

Note that the inverse of the step duration is the expected
consumption rate, so the reciprocals of equations (3) and
(4) are in fact type I and type II functional responses
(Holling 1959), respectively.

Similarly, the distance traveled between successive en-
counters (i.e., the step length) is exponentially distributed
with rate parameter lx:

l p 2rr. (5)x

The expectation for the step length is thus

1
E(x) p , (6)

2rr

and the expectation for the squared step length is

1
2E(x ) p . (7)

2 22r r

Note that h is not considered time spent traveling, and so
and are identical for type I and type II2E(x) E(x )

consumers.
By substituting equations (3) and (7) into equation (1),

we can express the expected mean squared displacement
of a type I consumer moving through (and inter-2E(R )

acting with) a field of randomly distributed resources as
a function of the resource density r:

tv
2E(R ) p . (8)

rr

Similarly, the expected mean squared displacement of a
type II consumer is expressed by substituting equations
(4) and (7) into equation (1):

tv
2E(R ) p . (9)

rr(1 � 2rrvh)

Thus, under the assumptions outlined above, resource lo-
cations are synonymous with potential turning points of
a consumptive random walker.

Einstein (1905) linked the Lagrangian mean squared
displacement of randomly moving particles to the corre-
sponding Eulerian diffusion rate (in two dimensions):

2E(R ) p 4tD, (10)

where D is the diffusion coefficient. It is thus possible to
express the diffusion coefficient of ideal consumers as a
function of resource density by substituting equation (8)
(for type I consumers) or equation (9) (for type II con-
sumers) into equation (10):

v
D p , (11)

4rr

v
D p . (12)

4rr(1 � 2rrvh)

Hence, our model predicts that diffusion rates should be
inversely related to resource density, regardless of whether
the consumer has a linear (type I; ; eq. [11]) or ah p 0
hyperbolic (type II; ; eq. [12]) functional response.h 1 0

Scenario II: Randomly Distributed, Mobile Resources

If resources travel at exactly the same constant speed as
the consumer, the only required modification is the mul-
tiplication of the relative speed (the speed of the consumer
relative to the resources) by the constant (Hutchinson4/p
and Waser 2007). Hence, for a type II consumer, the func-
tional response is now expressed as

1 (8/p)vrr
p , (13)

E(Dt) 1 � (8/p)vrrh

whereas the diffusion coefficient becomes

pv
D p . (14)

16rr[1 � (8/p)rrvh]

Alternatively, both consumers and resources may have
variable movement speeds sampled from independent
Maxwell-Boltzmann distributions, with expectations given
by and , respectively (Skellam 1958; Hutch-v vconsumer resource

inson and Waser 2007). Under these conditions, the mean
relative speed is defined asv̄

2 2�v̄ p v � v , (15)consumer resource

and the type II functional response is

¯1 2rvr
p . (16)

¯E(Dt) 1 � 2rvrh

As long as there is no correlation between speed and step
length, the diffusion coefficient can be expressed as

2vconsumerD p . (17)
¯ ¯4rvr(1 � 2rvrh)

Scenario III: Aggregated Resources

We used computer simulations to consider modifications
to the ideal-gas-based model presented thus far. The first
modification relates to the effect of resource spatial dis-
tribution (rather than just mean density) on rates of dif-
fusion and consumption of a type II consumer (see app.
B, available in a zip file, for the full Matlab simulation
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code). We employed a Neyman-Scott point process (Ney-
man and Scott 1952; Ripley 1977) to generate nonho-
mogeneous distributions of resources with different levels
of spatial aggregation. Two variables determine the aggre-
gation level in a Neyman-Scott point pattern: the standard
deviation of the Gaussian location of resource items within
a clump and the mean of the Poisson-distributed clump
size (i.e., the number of resource items per clump). In the
results presented here, aggregation was varied by changing
the latter while keeping the former constant (0.01 spatial
units).

Our simulation procedure is designed to estimate the
distance traveled by a mobile consumer between consec-
utive consumption events across nonhomogeneous re-
source landscapes. Each simulation begins with the gen-
eration of a Neyman-Scott point pattern of resources
within a two-dimensional domain. Neyman-Scott clusters
are added at randomly placed positions in space until the
overall point density in the entire domain reaches the de-
sired value (100 resource items per unit area). The focal
simulation arena is located in the center of this domain.
In accordance with the assumptions of the analytical
model, in which steps always begin and end with con-
sumption events (James et al. 2010), a randomly chosen
resource within the simulation arena is assigned as the
starting point for the consumer. The consumer is then
assumed to travel along a vertical corridor of width 2r.
The nearest occurrence at which a resource item falls
within this corridor is noted, the distance traveled is re-
corded, and the simulation is terminated. Should the con-
sumer reach the boundary of the simulation arena before
encountering a resource, the corridor is extended into a
new focal arena embedded within an extension of the spa-
tial domain. This process is repeated for 10,000 replicated
search trajectories.

To calculate diffusion rates, we focus on a type II con-
sumer traveling at a constant speed in accordance with the
ideal-gas assumptions. For each simulated step-length dis-
tribution, we estimated and , substituted these2E(Dt) E(x )
values into equation (1) to determine , and then used2E(R )
equation (10) to calculate the diffusion rate. To verify that
the values derived through equations (1) and (10) accu-
rately describe simulated diffusion rates, we independently
simulated 10 trajectories of 1,000 consumption events
each. The diffusion coefficient of each trajectory was cal-
culated directly by dividing the observed squared displace-
ment by four times the duration of the trajectory, and the
resulting values were plotted against the mean field ap-
proximations derived through equations (1) and (10) (see
app. A in the online edition of the American Naturalist).

To address the possibility that mobile resources have a
heterogeneous distribution, we assume that resource mo-
bility is sufficient to allow for complete remixing of the

system during the time required to handle a single re-
source. By the time the consumer renews its search, its
location is accordingly independent of the location of all
resource clusters. Hence, instead of originating from a
resource item, consumers in these simulations originated
from a random point in space. Consumer speed was mul-
tiplied by to account for resource mobility (see “Sce-4/p
nario II: Randomly Distributed, Mobile Resources”
above). Otherwise, steps were simulated in the exact same
manner as described above. Note that this simulation ap-
proach is suitable only when the position of the consumer
is assumed independent of all other system components
at the beginning of each step (James et al. 2010).

Scenario IV: CRW Consumers

So far we have assumed that animals move along perfectly
straight paths until they encounter a resource. Here we
use computer simulations to consider a more realistic pat-
tern of consumer movement (see app. C, available in a
zip file, for the full Matlab simulation code). Consumer
movement between resource encounters was simulated as
a correlated random walk with steps of constant length
(0.001 spatial units) across an infinite two-dimensional
space. The direction of each step was randomly drawn
from a Von Mises distribution with concentration param-
eter k, where the value of k determines the directionality
of the movement. This k is inversely proportional to the
sinuosity of the movement path (sensu Benhamou 2004),
so that corresponds to pure straight-line motionk p �
between resource encounters (as in all previous scenarios).
As before, a consumption event occurs whenever a re-
source item is within the consumer’s detection range
(0.0001 spatial units), and each consumption event leads
to reorientation. Each consumed resource is immediately
replaced by a new, randomly positioned resource item.
Diffusion and consumption rates were calculated, using
equations (1) and (10), on the basis of a sample of 1,000
consumption events for different resource densities and
different k values.

Results

Scenario I: Randomly Distributed, Static Resources

Consumption rates increased with resource density (eqq.
[3], [4]). The form of this response was linear, in the case
of a type I functional response, or decelerating as the con-
sumption rate approached the asymptote (h�1), in the case
of a type II functional response (fig. 1a). An increase in
the rate of resource acquisition was accompanied by in-
creased tortuosity of the movement path, resulting in an
exponentially declining function for consumer diffusion
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Figure 1: Predictions of the closed-form scenario I model for con-
sumption (a) and diffusion (b) rates as functions of resource density
(dashed and solid lines represent type I and type II consumers, re-
spectively). Open and filled squares represent results of numerical
simulations of the diffusion-consumption process for type I and type
II consumers, respectively, who are searching for randomly distrib-
uted, immobile resources. Parameter values are as follows: r p

, , , (see app. B, available in a0.0001 h p 1 v p 100 v p 0consumer resource

zip file, for simulation code).

Figure 2: Predictions of the closed-form scenario II model for con-
sumption (a) and diffusion (b) rates as functions of resource speed.
Dashed and solid lines represent type I and type II consumers, re-
spectively. Open and filled squares represent results of numerical
simulations of the diffusion-consumption process for type I and type
II consumers, respectively, who are searching for randomly distrib-
uted, mobile resources with Maxwell-Boltzmann distributed speeds.
Parameter values are as follows: , , ,r p 0.0001 h p 1 v p 100consumer

(see app. C, available in a zip file, for simulation code).r p 100

rates that asymptotically approaches zero at high resource
densities (fig. 1b). Increased resource density dampened
movement rates more severely in type II than in type I
functional responses (fig. 1b), simply because of the ad-
ditional time spent handling resources (eqq. [11], [12]).
Hence, high resource density enhanced consumption,
whereas it suppressed diffusion rates due to the mechanical
truncation of the movement trajectory.

Scenario II: Randomly Distributed, Mobile Resources

The incorporation of resource mobility (eqq. [13]–[17])
did not fundamentally change these predictions. While the
consumption rate of type I consumers was extremely sen-
sitive to changes in resource speed, this was rarely the case
for type II consumers because consumption rates were
usually limited by handling time (fig. 2a). Diffusion rates
of both consumer types decreased with resource speed due

to increased resource encounter rates (fig. 2b). In any case,
resource mobility per se reinforced but otherwise had no
qualitative effect on the trends predicted by our model
and presented in figure 1.

Scenario III: Aggregated Resources

When resources were not aggregated (i.e., a Neyman-Scott
point pattern with a constant clump size of 1; fig. 3a, 3b,
left-hand sides), our simulation results were in full agree-
ment with the results of the analytical models (scenarios
I and II; fig. 1). However, once resources became aggre-
gated, consumer diffusion rates increased with the level of
resource aggregation (fig. 3b). This increase is the result
of the modified distribution of step lengths with increased
frequency of very short steps (within resource clusters)
and very long steps (between resource clusters). This in-
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Figure 3: Simulated consumption (a) and diffusion (b) rates for type
II consumers as functions of resource aggregation. Variable levels of
resource aggregation were generated by varying the mean clump size
of the Neyman-Scott process while holding constant the standard
deviation of the within-clump dispersal and the mean resource den-
sity over the entire landscape ( and , respectively).j p 0.01 r p 100
A null clump size (left-hand side) corresponds to a random distri-
bution of resources as assumed in the ideal gas–based model (see
also figs. 1, 2). Each circle and each X represents a result for immobile
( ) and mobile ( ) resources, respectively. Dot-v p 0 v p 100resource resource

ted and dashed trend lines represent linear regressions based on
results for immobile and mobile resources, respectively. Other pa-
rameter values are as follows: , , (seer p 0.0001 h p 1 v p 100consumer

app. B, available in a zip file, for simulation code).

creased the variance of the step-length distribution, re-
sulting in increased and thus increased D.2E(x )

Despite strong effects of resource aggregation on con-
sumer diffusion rates, consumption rates were insensitive
to resource aggregation as long as resources were immobile
(fig. 3a). While the consumption rate of nonaggregated,
mobile resources (fig. 3a, left-hand side) was well predicted
by the analytical model (eq. [13]), consumption rates of
mobile resources decreased as the level of resource aggre-
gation increased (fig. 3a).

Scenario IV: CRW Consumers

Results from our numerical simulations indicated that
consumption rates were relatively insensitive to consumer
directionality, as reported in some previous studies (e.g.,

Hutchinson and Waser 2007; McKenzie et al. 2009; James
et al. 2010; but see Scharf et al. 2006; Bartumeus et al.
2008 for different model variants). Only for highly tor-
tuous paths (i.e., low k value) were there appreciable re-
ductions in consumption rates compared with those pre-
dicted by the analytical model (fig. 4a, 4b). For a type I
consumer, the suppressive effect of tortuous movement
on consumption rates was proportionate to resource den-
sity (fig. 4a). However, this was not the case for a type II
consumer, because the asymptotic limit imposed by han-
dling time buffered the effects of movement directionality
(fig. 4b).

On the other hand, consumer diffusion rates were ex-
tremely sensitive to movement directionality. For consum-
ers traveling along highly directional paths, diffusion rates
declined exponentially with resource abundance in a man-
ner that was well predicted by our scenario I analytical
model (fig. 4c, 4d). However, even mild deviation from
straight-line movement resulted in depressed diffusion
rates that were much less sensitive to resource density (fig.
4c, 4d). Regardless of the functional-response type, at low
resource densities or for consumers with highly tortuous
movement paths, the diffusion rate was determined solely
by directionality. It was only when either directionality or
resource density were very high that consumer diffusion
became sensitive to resource density (fig. 4c, 4d).

Discussion

Consumers ranging from bacteria (Berg 2000) to wilde-
beest (Holdo et al. 2009) tend to linger in areas of high
resource abundance. Movement rates have been accord-
ingly suggested as a proxy for delineating profitable areas
within the landscape (Barraquand and Benhamou 2008).
Numerous empirical studies have demonstrated slower,
more tortuous movements in habitats with abundant re-
sources (Klaassen et al. 2006; Kuefler and Haddad 2006;
de Knegt et al. 2007; Weimerskirch et al. 2007; Fryxell et
al. 2008; Westerberg et al. 2008; Dias et al. 2009; Kuefler
et al. 2010). It is often assumed that such nonrandom
movement patterns are the result of an adaptive behavioral
response to local resource abundance, commonly termed
area-restricted search (Tinbergen et al. 1967), in which the
consumer decides to decrease speed (orthokinesis) or in-
crease turning angle (klinokinesis) after encountering a
resource patch (Jander 1975; Pyke et al. 1977; Kareiva and
Odell 1987; Benhamou and Bovet 1989; Biesinger and
Haefner 2005 and references therein). Our model offers
an alternative mechanistic explanation.

We have demonstrated that under a wide range of con-
ditions, the rate of diffusion should be strongly influenced
by resource density even without any decisive behavioral
response to resource abundance or spatial heterogeneity.
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Figure 4: Simulated consumption (a, b) and diffusion (c, d) rates
as functions of resource density for type I (a, c) and type II (b, d)
consumers with four levels of directionality: (straight-linek p �
movement; squares), (high directional autocorrelation; tri-k p 5,000
angles), (low directional autocorrelation; Xs), and (purek p 1 k p 0
random walk; circles). Note that all axes are log scaled. Other pa-
rameter values are as follows: , , ,h p 10 r p 0.0001 v p 100consumer

(see app. D, available in a zip file, for simulation code).v p 0resource

It is an inevitable by-product of statistical movement me-
chanics, provided that new directions are sampled at each
resource encounter. Movement trajectories generated by
our model result in resource-dependent shifts in step-
length and turn-angle distributions that are similar to
those commonly interpreted as adaptive decision-based
foraging strategies. Therefore, our model might be re-
garded as a null model against which behavioral decision-
making hypotheses might be evaluated.

Increased sinuosity following resource encounters is an
efficient adaptive strategy for the utilization of patchy re-
sources (Benhamou 2007). In terms of maximizing intake
rate, such a strategy is expected to outperform orthokinesis
(due to the correlation between speed and encounter rate)
and is certainly superior to the simple mechanistic effect
demonstrated here. We are not rejecting the notion of area-
restricted search via klinokinesis as an adaptive behavioral
strategy. Rather, we suggest that inferring such a process
on the basis of empirical data requires more substantial
evidence than a simple demonstration that turn-angle or
step-length distributions vary with local resource abun-
dance. It is by coupling movement data with secondary
information, such as the actual locations of resources or
foraging activity (e.g., Heinrich 1979; White et al. 1984;
Ward and Saltz 1994; Fortin 2003; Fryxell et al. 2008) or
the giving-up density (e.g., Brown 1999; Kotler et al. 2004),
that the behavioral or cognitive processes underlying
emerging movement properties should be investigated.

Our examination of the effects of resource aggregation
suggests that consumption rates should be substantially
reduced when resources are both aggregated and mobile
(e.g., fish schools or ungulate herds). Interestingly, this
result appears to disagree with previous theoretical findings
by James et al. (2010), who concluded that the functional
response should be insensitive to resource spatial aggre-
gation (note that for immobile resources, our results sup-
port this conclusion). This apparent discrepancy stems
from our explicit inclusion of a handling time, during
which the consumer is immobile (a component that was
not included in James et al. 2010). As resource groups
continue to move during this period of consumer im-
mobility, the consumer effectively initiates each new search
from a random position in space relative to other resource
groups, including the one that was encountered last. Con-
sequently, the consumer experiences a de facto resource
density that is lower than the overall mean density (clusters
are by definition less abundant than isolated individuals).
This pattern, intuitive as it may be, may play an important
role in stabilizing consumer-resource interactions. For ex-
ample, group formation reduces the overall predation
pressure experienced by Serengeti wildebeest, potentially
stabilizing their interaction with lions (Fryxell et al. 2007).
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Our work provides simple mechanistic understanding of
such group-dependent functional responses.

While the analytical null model presented here relies on
a highly simplified view of animal movement, it is con-
sistent with the implicit assumptions underlying Holling’s
functional-response models and the ideal-gas law. In na-
ture, many animals do not travel along straight trajectories
but instead alter their courses for reasons other than re-
source encounter. Our simulations incorporating more re-
alistic movement models on the basis of correlated random
walks suggest that the degrees to which diffusion and con-
sumption rates vary with consumer directionality should
depend on resource density. When resources are abundant,
movement patterns are largely governed by resource en-
counters. On the other hand, when resources are sparse,
movement patterns are determined by the internal capacity
to maintain directionality.

To conclude, our models incorporate fundamental at-
tributes of naturally occurring consumer-resource inter-
actions such as resource aggregation and mobility and con-
sumer directionality. We provide simple null mechanisms
that explain several empirically observed phenomena, in-
cluding decreased movement rates in preferred habitats
(e.g., Kuefler and Haddad 2006), selective use of resource-
rich patches (e.g., Cameron and Spencer 2008), and re-
duced consumption rates of mobile, aggregated resources
(Fryxell et al. 2007). We show that diffusion rates and
consumption rates are inextricably linked through com-
mon effects superimposed by resource density, heteroge-
neity, and mobility. Hence, all three interacting factors are
consequently important determinants of ecosystem
dynamics.
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