86 research outputs found

    Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany

    Get PDF
    AbstractAt Ketzin, about 25km west of Berlin (Germany), the saline aquifer of the Triassic Stuttgart Formation is used for a carbon dioxide storage research project. The formation is lithologically very heterogeneous, reflecting a complex fluviatile facies distribution pattern. We focused on the development of a primary geological reservoir model as commonly employed for dynamic modelling during the planning and early injection stages of a storage project. Due to the need to capture the complex geometrical structure of the Stuttgart Formation, despite limited availability of exploration data, stochastic modelling techniques were employed. Firstly, we modelled the facies architecture of the reservoir and, secondly, assigned porosity and permeability values to the facies types included in the model. Petrophysical parameters for each facies type were quantified using site-specific porosity histograms and related permeability functions. The comparison of dynamic flow simulation results and well-test interpretations, and furthermore with the first observed monitoring data, helped to focus the modelling work and to adjust monitoring plans. Modelling is understood as an iterative process, both with respect to data arrival and progressively improving the understanding of the reservoir, but also with respect to the problem which the model is being designed to address

    Facilitating online discussion, tutoring and moderating skills in clinical psychology lecturers

    Get PDF
    The inclusion of online approaches in clinical psychology training has necessitated an examination of the skills required by trainers. This paper describes the development of a short tutorial to promote online discussion tutoring and moderation skills in clinical psychology lecturers

    The history of hydrocarbon filling of Danish chalk fields

    Get PDF
    In an oil reservoir, the geometry of the interface between water and oil is critical in determining the volume of oil trapped below the top seal. If the interface is planar and horizontal, the volume calculation is fairly simple, but if the interface is tilted or undulating, estimation of the volume of the trapped oil is complex as it depends on the combined structural and fluid contact geometry. Since accumulation of the oil may take place over a time span of several million years, while the reservoir is experiencing burial and compaction, the charge history must be studied using dynamic methods that account for these changes and for flow in both the oil and water phases. These processes have been studied quantitatively at the Geological Survey of Denmark and Greenland (GEUS) in a project that has combined the burial model with a fluid flow simulator. The modelling study shows that filling of a chalk reservoir can have a very long and complex history dominated by very low fluid flow rates (cm/year). The resulting modelled present-day situation exhibits a very irregular oil distribution and a non-planar geometry of the fluid contacts, and shows marked similarities to that shown by the field data

    Coupled Dynamic Flow and Geomechanical Simulations for an Integrated Assessment of CO2 Storage Impacts in a Saline Aquifer

    Get PDF
    Pore pressure variation resulting from geological CO2 storage may compromise reservoir, caprock and fault integrity. Therefore, we investigate the mechanical impact of industrial-scale CO2 storage at a prospective Danish site by coupled 3D hydro-mechanical simulations carried out by two independent modelling groups. Even though the two chosen modelling strategies are not identical, simulation results demonstrate that storage integrity is maintained at any time. Vertical displacements are mainly determined by hydraulic fault conductivity influencing spatial pore pressure elevation. The introduced fault zone implementation in the hydro- mechanical model allows for localization of potential leakage pathways for formation fluids along the fault plane

    Resistance training and youth

    Get PDF
    This is the publisher's version, also found at http://ehis.ebscohost.com/ehost/detail?vid=4&sid=34ab1967-2aea-457b-b261-e90e7b05e38c%40sessionmgr11&hid=2&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=s3h&AN=20752095The use of resistance training for children has increased in popularity and interest. It appears that children are capable of voluntary strength gains. Exercise prescription in younger populations is critical and requires certain program variables to be altered tTom adult perspectives. Individualization is vital, as the rate of physiological maturation has an impact on the adaptations that occur, The major difference in programs for children is the use of lighter loads (i.e., > 6 RM loads). It appears that longer duration programs (i.e., 10-20 wks) are better for observing training adaptations. This may be due to the fact that it takes more exercise to stimulate adaptational mechanisms related to strength performance beyond that of normal growth rates. The risk of injury appears low during participation in a resistance training program, and this risk is minimized with proper supervision and instruction. Furthermore, with the incidence of injury in youth sports, participation in a resistance training program may provide a protective advantage in one's preparation for sports participation

    Development of a Unifying Target and Consensus Indicators for Global Surgical Systems Strengthening: Proposed by the Global Alliance for Surgery, Obstetric, Trauma, and Anaesthesia Care (The G4 Alliance)

    Get PDF

    Introduction

    No full text
    corecore