4,067 research outputs found

    Neutrinos from Fallback onto Newly Formed Neutron Stars

    Full text link
    In the standard supernova picture, type Ib/c and type II supernovae are powered by the potential energy released in the collapse of the core of a massive star. In studying supernovae, we primarily focus on the ejecta that makes it beyond the potential well of the collapsed core. But, as we shall show in this paper, in most supernova explosions, a tenth of a solar mass or more of the ejecta is decelerated enough that it does not escape the potential well of that compact object. This material falls back onto the proto-neutron star within the first 10-15 seconds after the launch of the explosion, releasing more than 1e52erg of additional potential energy. Most of this energy is emitted in the form of neutrinos and we must understand this fallback neutrino emission if we are to use neutrino observations to study the behavior of matter at high densities. Here we present both a 1-dimensional study of fallback using energy-injected, supernova explosions and a first study of neutrino emission from fallback using a suite of 2-dimensional simulations.Comment: 30 pages (including 10 figures), submitted to ApJ, comments welcom

    Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity

    Full text link
    The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. Using recent advances in our understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytical prescriptions for compact object masses for major population synthesis codes. In an accompanying paper, Belczynski et al., we demonstrate that these qualitatively new results for compact objects can explain the observed gap in the remnant mass distribution between ~2-5 solar masses and that they place strong constraints on the nature of the supernova engine. Here, we show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.Comment: 37 pages with 16 figures, submitted to Ap

    The Los Alamos Supernova Light Curve Project: Computational Methods

    Full text link
    We have entered the era of explosive transient astronomy, in which upcoming real-time surveys like the Large Synoptic Survey Telescope (LSST), the Palomar Transient Factory (PTF) and Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) will detect supernovae in unprecedented numbers. Future telescopes such as the James Webb Space Telescope may discover supernovae from the earliest stars in the universe and reveal their masses. The observational signatures of these astrophysical transients are the key to unveiling their central engines, the environments in which they occur, and to what precision they will pinpoint cosmic acceleration and the nature of dark energy. We present a new method for modeling supernova light curves and spectra with the radiation hydrodynamics code RAGE coupled with detailed monochromatic opacities in the SPECTRUM code. We include a suite of tests that demonstrate how the improved physics is indispensable to modeling shock breakout and light curves.Comment: 18 pages, 19 figures, published in ApJ Supplement

    Explosive Nucleosynthesis from GRB and Hypernova Progenitors: Direct Collapse versus Fallback

    Get PDF
    The collapsar engine behind long-duration gamma-ray bursts extracts the energy released from the rapid accretion of a collapsing star onto a stellar-massed black hole. In a collapsing star, this black hole can form in two ways: the direct collapse of the stellar core into a black hole and the delayed collapse of a black hole caused by fallback in a weak supernova explosion. In the case of a delayed-collapse black hole, the strong collapsar-driven explosion overtakes the weak supernova explosion before shock breakout, and it is very difficult to distinguish this black hole formation scenario from the direct collapse scenario. However, the delayed-collapse mechanism, with its double explosion, produces explosive nucleosynthetic yields that are very different from the direct collapse scenario. We present 1-dimensional studies of the nucleosynthetic yields from both black hole formation scenarios, deriving differences and trends in their nucleosynthetic yields.Comment: 47 pages, submitted to Ap
    • …
    corecore