102 research outputs found

    BCHS 2526 Health Disparities Research: Methods and Interventions

    Get PDF
    This course will examine the challenges and methods in the implementation of health disparities research and interventions. It is intended to both complement and expand the knowledge gained in other BCHS courses by focusing specifically on minority/underserved populations. The course will explore readings and foster discussions that will include: ethics and research in minority/underserved communities; issues, barriers and facilitators to engaging minority/underserved communities in health research; examining basic research questions in minority health; understanding the application of research findings to program development; how to integrate theory and research, and issues and challenges of program implementation. An overarching goal is to increase awareness and knowledge of research on minority health, as well as unique issues to consider when engaging in public health research and practice in these communities. The purpose of this class is to introduce basic issues, challenges, and opportunities that are encountered in health disparities research and interventions. Current research and resources from minority health and health disparities literature will provide the background for student assignments

    Attributes of researchers and their strategies to recruit minority populations: Results of a national survey

    Get PDF
    Despite NIH mandates for inclusion, recruiting minorities is challenging for biomedical and public health researchers. Little is known about how attributes of researchers affect their choice of recruitment strategies. The purpose of this study was to address this gap by examining how use of recruitment strategies relates to other researcher characteristics. To do this, we conducted an online survey from May to August 2010 with researchers (principal investigators, research staff, and IRB members) in which we measured the number and types of recruitment strategies utilized, along with other characteristics of the researchers and their research. We identified two clusters of researchers: comprehensive researchers who utilized a greater number and more diverse and active recruitment strategies, and traditional researchers, who utilized fewer and more passive strategies. Additional characteristics that distinguished the two groups were that comprehensive researchers were more likely than traditional researchers to 1) report racial and ethnic differences as one of their specific aims or hypotheses, 2) receive federal (CDC and NIH) funding, 3) conduct behavioral or epidemiological research, and 4) have received training in conducting research with and recruiting minorities. Traditional researchers, on the other hand, were more likely to conduct clinical research and a greater (though non-significant) percentage received funding from pharmaceutical sources. This study provides a novel description of how researcher attributes are related to their recruitment strategies and raises a number of future research questions to further examine the implications of this relationship.http://dx.doi.org/10.1016/j.cct.2012.06.01

    Polarization and Belief Dynamics in the Black and White Communities: An Agent-Based Network Model from the Data

    Get PDF
    Public health care interventions—regarding vaccination, obesity, and HIV, for example—standardly take the form of information dissemination across a community. But information networks can vary importantly between different ethnic communities, as can levels of trust in information from different sources. We use data from the Greater Pittsburgh Random Household Health Survey to construct models of information networks for White and Black communities--models which reflect the degree of information contact between individuals, with degrees of trust in information from various sources correlated with positions in that social network. With simple assumptions regarding belief change and social reinforcement, we use those modeled networks to build dynamic agent-based models of how information can be expected to flow and how beliefs can be expected to change across each community. With contrasting information from governmental and religious sources, the results show importantly different dynamic patterns of belief polarization within the two communities

    NuSTARobservations of grb 130427a establish a single component synchrotron afterglow origin for the late optical to multi-gev emission

    Get PDF
    GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (similar to 1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation. Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics

    The LIGO HET Response (LIGHETR) Project to Discover and Spectroscopically Follow Optical Transients Associated with Neutron Star Mergers

    Full text link
    The LIGO HET Response (LIGHETR) project is an enterprise to follow up optical transients (OT) discovered as gravitational wave merger sources by the LIGO/Virgo collaboration (LVC). Early spectroscopy has the potential to constrain crucial parameters such as the aspect angle. The LIGHETR collaboration also includes the capacity to model the spectroscopic evolution of mergers to facilitate a real-time direct comparison of models with our data. The principal facility is the Hobby-Eberly Telescope. LIGHETR uses the massively-replicated VIRUS array of spectrographs to search for associated OTs and obtain early blue spectra and in a complementary role, the low-resolution LRS-2 spectrograph is used to obtain spectra of viable candidates as well as a densely-sampled series of spectra of true counterparts. Once an OT is identified, the anticipated cadence of spectra would match or considerably exceed anything achieved for GW170817 = AT2017gfo for which there were no spectra in the first 12 hours and thereafter only roughly once daily. We describe special HET-specific software written to facilitate the program and attempts to determine the flux limits to undetected sources. We also describe our campaign to follow up OT candidates during the third observational campaign of the LIGO and Virgo Scientific Collaborations. We obtained VIRUS spectroscopy of candidate galaxy hosts for 5 LVC gravitational wave events and LRS-2 spectra of one candidate for the OT associated with S190901ap. We identified that candidate, ZTF19abvionh = AT2019pip, as a possible Wolf-Rayet star in an otherwise unrecognized nearby dwarf galaxy.Comment: 26 pages, 15 figure

    Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in CassiopeiaA

    Get PDF
    Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium1, directly probes the explosion asymmetries. Cassiopeia A is a young2, nearby3, core-collapse4 remnant from which 44Ti emission has previously been detected5, 6, 7, 8 but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission9, from optical light echoes10, and from jet-like features seen in the X-ray11 and optical12 ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae

    SN 2010j1: Optical to Hard X-Ray Observations Reveal an Explosion Embedded in a Ten Solar Mass Cocoon

    Get PDF
    Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme atleast 9 1050 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within 1016 cm of the progenitor of SN 2010jl was in excess of 10M_. This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was 6000 km s1, decelerating to 2600 km s1 about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light measured to be in the range of 2000-4500 km s1 if the ions and electrons are in equilibrium, and_2000 km s1 if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r2 law. A possible explanation for the _10M_ of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years

    The Metabolic Consequences of Hepatic AMP-Kinase Phosphorylation in Rainbow Trout

    Get PDF
    AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is proposed to function as a “fuel gauge” to monitor cellular energy status in response to nutritional environmental variations. However, in fish, few studies have addressed the metabolic consequences related to the activation of this kinase. This study demonstrates that the rainbow trout (Oncorhynchus mykiss) possesses paralogs of the three known AMPK subunits that co-diversified, that the AMPK protein is present in the liver and in isolated hepatocytes, and it does change in response to physiological (fasting-re-feeding cycle) and pharmacological (AICAR and metformin administration and incubations) manipulations. Moreover, the phosphorylation of AMPK results in the phosphorylation of acetyl-CoA carboxylase, a main downstream target of AMPK in mammals. Other findings include changes in hepatic glycogen levels and several molecular actors involved in hepatic glucose and lipid metabolism, including mRNA transcript levels for glucokinase, glucose-6-phosphatase and fatty acid synthase both in vivo and in vitro. The fact that most results presented in this study are consistent with the recognized role of AMPK as a master regulator of energy homeostasis in living organisms supports the idea that these functions are conserved in this piscine model

    SN 2010jl: Optical to Hard X-ray Observations Reveal an Explosion Embedded In a Ten Solar Mass Cocoon

    Get PDF
    Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme—at least 9 × 1050 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ~1016 cm of the progenitor of SN 2010jl was in excess of 10 M☉. This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ~6000 km s–1, decelerating to ~2600 km s–1 about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light—measured to be in the range of 2000-4500 km s–1 if the ions and electrons are in equilibrium, and ≳2000 km s–1 if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r–2 law. A possible explanation for the ≳10 M☉ of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years
    • 

    corecore