8,310 research outputs found

    Feasibility of V/STOL concepts for short-haul transport aircraft

    Get PDF
    Feasibility of V/STOL concepts for short-haul transport aircraf

    Supplement to feasibility of V/STOL concepts for short-haul transport aircraft

    Get PDF
    Feasibility of revised V/STOL design and flight plan concepts for short haul transport aircraf

    Role of OH-stretch/torsion coupling and quantum yield effects in the first OH overtone spectrum of cis-cis HOONO

    Get PDF
    A joint theoretical and experimental investigation is undertaken to study the effects of OH-stretch/HOON torsion coupling and of quantum yield on the previously reported first overtone action spectrum of cis-cis HOONO (peroxynitrous acid). The minimum energy path along the HOON dihedral angle is computed at the coupled cluster singles and doubles with perturbative triples level with correlation consistent polarized quadruple zeta basis set, at the structure optimized using the triple zeta basis set (CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ). The two-dimensional ab initio potential energy and dipole moment surfaces for cis-cis HOONO are calculated as functions of the HOON torsion and OH bond length about the minimum energy path at the CCSD(T)/cc-pVTZ and QCISD/AUG-cc-pVTZ (QCISD—quadratic configuration interaction with single and double excitation and AUG-augmented with diffuse functions) level of theory/basis, respectively. The OH-stretch vibration depends strongly on the torsional angle, and the torsional potential possesses a broad shelf at ~90°, the cis-perp conformation. The calculated electronic energies and dipoles are fit to simple functional forms and absorption spectra in the region of the OH fundamental and first overtone are calculated from these surfaces. While the experimental and calculated spectra of the OH fundamental band are in good agreement, significant differences in the intensity patterns are observed between the calculated absorption spectrum and the measured action spectrum in the 2nuOH region. These differences are attributed to the fact that several of the experimentally accessible states do not have sufficient energy to dissociate to OH+NO2 and therefore are not detectable in an action spectrum. Scaling of the intensities of transitions to these states, assuming D0=82.0 kJ/mol, is shown to produce a spectrum that is in good agreement with the measured action spectrum. Based on this agreement, we assign two of the features in the spectrum to Delta n=0 transitions (where n is the HOON torsion quantum number) that are blue shifted relative to the origin band, while the large peak near 7000 cm^–1 is assigned to a series of Delta n=+1 transitions, with predominant contributions from torsionally excited states with substantial cis-perp character. The direct absorption spectrum of cis-cis HOONO (6300–6850 cm^–1) is recorded by cavity ringdown spectroscopy in a discharge flow cell. A single band of HOONO is observed at 6370 cm^–1 and is assigned as the origin of the first OH overtone of cis-cis HOONO. These results imply that the origin band is suppressed by over an order of magnitude in the action spectrum, due to a reduced quantum yield. The striking differences between absorption and action spectra are correctly predicted by the calculations

    Chern-Simons action for zero-mode supporting gauge fields in three dimensions

    Get PDF
    Recent results on zero modes of the Abelian Dirac operator in three dimensions support to some degree the conjecture that the Chern-Simons action admits only certain quantized values for gauge fields that lead to zero modes of the corresponding Dirac operator. Here we show that this conjecture is wrong by constructing an explicit counter-example.Comment: version as published in PRD, minor change

    Tomography of the Alpine region from observations of seismic ambient noise

    Get PDF
    We use correlations of the ambient seismic noise to study the crust in western Europe. Cross correlation of 1 year of noise recorded at 150 three components broadband stations yields more than 3 000 Rayleigh wave group velocity measurements. These measurements are used to construct Rayleigh group velocity maps of the Alpine region and surrounding area in the 5-80 s period band. In the 5-10 s period band, the seismic noise recorded in Europe is dominated by surface waves originating from the Northern Atlantic ocean. This anisotropy of the noise and the uneven station distribution affect the azimuthal distribution of the paths where we obtain reliable group velocity measurements. As a consequence our group velocity models have better resolution in the northeast direction than in the southwest direction. Finally we invert the resulting Rayleigh wave group velocity maps to determine the Moho depth. Our results are in good agreement with the result of the numerous active experiments in the Alps and provide a continuous image of the Alpine structur

    The abundance of high-redshift objects as a probe of non-Gaussian initial conditions

    Get PDF
    The observed abundance of high-redshift galaxies and clusters contains precious information about the properties of the initial perturbations. We present a method to compute analytically the number density of objects as a function of mass and redshift for a range of physically motivated non-Gaussian models. In these models the non-Gaussianity can be dialed from zero and is assumed to be small. We compute the probability density function for the smoothed dark matter density field and we extend the Press and Schechter approach to mildly non-Gaussian density fields. The abundance of high-redshift objects can be directly related to the non-Gaussianity parameter and thus to the physical processes that generated deviations from the Gaussian behaviour. Even a skewness parameter of order 0.1 implies a dramatic change in the predicted abundance of z\gap 1 objects. Observations from NGST and X-ray satellites (XMM) can be used to accurately measure the amount of non-Gaussianity in the primordial density field.Comment: Minor changes to match the accepted ApJ version (ApJ, 539

    Protecting the Primordial Baryon Asymmetry From Erasure by Sphalerons

    Full text link
    If the baryon asymmetry of the universe was created at the GUT scale, sphalerons together with exotic sources of (B−L)(B-L)-violation could have erased it, unless the latter satisfy stringent bounds. We elaborate on how the small Yukawa coupling of the electron drastically weakens previous estimates of these bounds.Comment: 41 pp., 4 latex figures included and 3 uuencoded or postscript figures available by request, UMN-TH-1213-9
    • …
    corecore