187 research outputs found

    A bunch of sessions:a propositions-as-sessions interpretation of bunched implications in channel-based concurrency

    Get PDF
    The emergence of propositions-as-sessions, a Curry-Howard correspondence between propositions of Linear Logic and session types for concurrent processes, has settled the logical foundations of message-passing concurrency. Central to this approach is the resource consumption paradigm heralded by Linear Logic. In this paper, we investigate a new point in the design space of session type systems for message-passing concurrent programs. We identify O’Hearn and Pym’s Logic of Bunched Implications (BI) as a fruitful basis for an interpretation of the logic as a concurrent programming language. This leads to a treatment of non-linear resources that is radically different from existing approaches based on Linear Logic. We introduce a new π-calculus with sessions, called πBI; its most salient feature is a construct called spawn, which expresses new forms of sharing that are induced by structural principles in BI. We illustrate the expressiveness of πBI and lay out its fundamental theory: type preservation, deadlock-freedom, and weak normalization results for well-typed processes; an operationally sound and complete typed encoding of an affine λ-calculus; and a non-interference result for access of resources

    Scattering of evanescent wave by two cylinders near a flat boundary

    Full text link
    Two-dimensional problem of evanescent wave scattering by dielectric or metallic cylinders near the interface between two dielectric media is solved numerically by boundary integral equations method. A special Green function was proposed to avoid the infinite integration. A pattern with a circular and a prolate elliptic cylinders, respectively, is suggested to simulate the sample and the probe in near-field optical microscopy. The energy flux in the midplane of the probe-cylinder is calculated as a function of its position.Comment: 10 pages, 4 figure

    Soliton content in the standard optical OFDM signal

    Get PDF
    The nonlinear Schrödinger equation (NLSE) is often used as a master path-average model for fiber-optic transmission lines. In general, the NLSE describes the co-existence of dispersive waves and soliton pulses. The propagation of a signal in such a nonlinear channel is conceptually different from linear systems. We demonstrate here that the conventional orthogonal frequency-division multiplexing (OFDM) input optical signal at powers typical for modern communication systems might have soliton components statistically created by the random process corresponding to the information content. Applying the Zakharov–Shabat spectral problem to a single OFDM symbol with multiple subcarriers, we quantify the effect of the statistical soliton occurrence in such an information-bearing optical signal. Moreover, we observe that at signal powers optimal for transmission, an OFDM symbol incorporates multiple solitons with high probability. The considered optical communication example is relevant to a more general physical problem of the generation of coherent structures from noise

    Nonlinear Fourier transform for optical data processing and transmission:advances and perspectives

    Get PDF
    Fiber-optic communication systems are nowadays facing serious challenges due to the fast growing demand on capacity from various new applications and services. It is now well recognized that nonlinear effects limit the spectral efficiency and transmission reach of modern fiber-optic communications. Nonlinearity compensation is therefore widely believed to be of paramount importance for increasing the capacity of future optical networks. Recently, there has been steadily growing interest in the application of a powerful mathematical tool-the nonlinear Fourier transform (NFT)-in the development of fundamentally novel nonlinearity mitigation tools for fiber-optic channels. It has been recognized that, within this paradigm, the nonlinear crosstalk due to the Kerr effect is effectively absent, and fiber nonlinearity due to the Kerr effect can enter as a constructive element rather than a degrading factor. The novelty and the mathematical complexity of the NFT, the versatility of the proposed system designs, and the lack of a unified vision of an optimal NFT-type communication system, however, constitute significant difficulties for communication researchers. In this paper, we therefore survey the existing approaches in a common framework and review the progress in this area with a focus on practical implementation aspects. First, an overview of existing key algorithms for the efficacious computation of the direct and inverse NFT is given, and the issues of accuracy and numerical complexity are elucidated. We then describe different approaches for the utilization of the NFT in practical transmission schemes. After that we discuss the differences, advantages, and challenges of various recently emerged system designs employing the NFT, as well as the spectral efficiency estimates available up-to-date. With many practical implementation aspects still being open, our mini-review is aimed at helping researchers assess the perspectives, understand the bottlenecks, and envision the development paths in the upcoming NFT-based transmission technologies

    Development and Study of Hard-Facing Materials on the Base of Heat-Resisting High-Hardness Steels for Plasma-Jet Hard- Facing in Shielding-Doping Nitrogen Atmosphere

    Get PDF
    The authors develop hard-facing materials on the base of heat-resisting highhardness steels for plasma-jet hard-facing in nitrogen atmosphere for manufacturing parts of mining and metallurgic equipment which significantly simplify the production process and effect a saving when producing bimetallic parts and tools

    New approaches to coding information using inverse scattering transform

    Get PDF
    Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fiber links. Fundamental optical soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the transmission of information in fiber-optic channels. Here, we propose to apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design. First, we describe an approach based on exploiting the general N-soliton solution of the NLSE for simultaneous coding of N symbols involving 4×N coding parameters. As a specific elegant subclass of the general schemes, we introduce a soliton orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of identical imaginary parts of the N-soliton solution eigenvalues, corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme, thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum
    corecore