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Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE)
can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fibre links.
Fundamental optical soliton, continuous and discrete eigenvalues of the nonlinear spectrum have
already been considered for transmission of information in fibre-optic channels. Here we propose to
apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations (GLME) that
offers the advantage of a relatively simple decoder design. First, we describe an approach based on
exploiting the general N-soliton solution of the NLSE for simultaneous coding ofN symbols involving
4×N coding parameters. As a specific elegant sub-class of the general schemes we introduce a soliton
orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of
identical imaginary parts of the N-soliton solution eigenvalues, corresponding to equidistant soliton
frequencies making it similar to the conventional OFDM scheme, thus, allowing use of the efficient
fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new
approach to control signal parameters in the case of the continuous spectrum.

PACS numbers: 02.30.Ik, 05.45.Yv,42.81.Dp,89.70.+c

INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is a
generic fundamental mathematical model with numer-
ous applications in science and technology. In particu-
lar, the NLSE describes a path-average propagation of
light in fibre-optic systems that is the backbone of the
modern global communication networks. The NLSE is
an example of a fundamental model of nonlinear physics
which can be integrated by the Inverse Scattering Trans-
form (IST) method [1, 2]. The IST method is one of
the greatest achievements of mathematical physics in the
20-th century (see e.g. [1–7] and references therein). In
recent years (especially in optical communications) the
IST method is also referred to as the Nonlinear Fourier
Transform (NFT) stressing the similarity to the conven-
tional Fourier transform and the ability of the IST/NFT
to present solutions of the nonlinear evolution equation
on the basis of non-interacting modes called scattering
data or (in the NFT notation) nonlinear spectrum.

One specific, albeit highly important, application of
the NLSE is in optical communications, where it is de-
rived as a path-average (over periodic variations of power
due to loss and gain) model governing the signal propa-
gation along the transmission line [6, 8, 9] (here we use
the normalised version):
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Here q(z, t) is an optical field envelope, z is a propagation
distance along the optical fibre and t is the retarded time.

The general solution of the NLSE is presented by the
superposition of solitary (localised in time) waves corre-

sponding to the discrete (solitonic) part of the nonlinear
spectrum and dispersive waves associated with the con-
tinuous part of the nonlinear spectrum. Recent advances
in coherent optical communication allowing information
coding both over amplitude and phase have made it pos-
sible to reconsider relatively old ideas of using the soli-
ton solution of the NLSE [6, 9] and nonlinear spectrum
eigenvalues for the transmission of information [10] in
the new context. The recent surge of interest in nonlin-
ear transmission techniques is in particular due to the
observation that conventional (linear) data transmission
techniques are facing serious challenges induced by the
nonlinear properties of the optical fibre communication
channels (an excellent overview is given in [11, 12]). This
calls for the development of new nonlinear techniques of
signal coding, transmission and processing.

The traditional soliton transmission has been recently
reassessed in [13, 14] in the context of coherent communi-
cation and the use of soliton phase for data transmission.
Moreover, a great deal of interest has been sparked re-
cently by the application of the powerful IST/NFT meth-
ods in optical communications (see e.g. [15–21] and ref-
erences therein, we simply are not able to review here all
relevant papers that have been published recently in this
fast growing field).

The efficiency of numerical algorithms for data en-
coding/decoding is critically important in the digital
telecommunication networks. For instance, in wireless
communication, the success and popularity of the orthog-
onal frequency division multiplexing (OFDM) method is
due to the exceptional computational performance and
high spectral efficiency of the fast Fourier transform
(FFT) [22]. The success of the practical implementa-
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tion of the nonlinear IST/NFT techniques will be de-
fined by the availability of the fast and super-fast NFT
methods [19, 23, 24] and the stability of algorithms with
respect to noise impact. The IST/NFT technique is rel-
atively new compared to conventional methods and the
currently available numerical algorithms of information
encoding/decoding using solitonic signal are still far from
the efficiency required in practical hardware implemen-
tation.

Here we propose to use the kernel of the Gelfand-
Levitan-Marchenko equations (GLME) to encode infor-
mation, in particular, we demonstrate that the OFDM
scheme can be applied in an efficient way. To create
signal at the beginning of the transmission line as well
as to recover the encoded kernel at the end of the line,
here we use the efficient Toeplitz inner-bordering (TIB)
numerical scheme of inverse and direct scattering trans-
form (which was recently introduced by Frumin and co-
authors [23, 24]) and the exact soliton solution known
from the IST theory [1, 2].

For the discrete nonlinear spectrum, we propose
a soliton orthogonal frequency division multiplexing
(SOFDM) technique that is based on the choice of iden-
tical imaginary parts of N-soliton solution eigenvalues,
corresponding to equidistant soliton frequencies making
it similar to the conventional OFDM scheme and allow-
ing the use of the efficient fast Fourier transform algo-
rithm to recover the data. We also demonstrate how the
concept of the OFDM can be applied for the continuous
spectrum kernel [17]. The important advantage of using
coding over kernel of the GLME is the possibility of con-
trolling signal parameters by utilising the time domain
window functions in the modulated kernel.

N-SOLITON SOLUTIONS OF THE NLSE FOR
N-SYMBOL BLOCK TRANSMISSION

In the traditional soliton transmission a single (soli-
ton) pulse is used as an information carrier sent over
a time slot allocated to one symbol in a given spectral
channel [6, 9]. Transmission in this case is affected by
the soliton interactions, and/or is restricted in the spec-
tral efficiency, because a separate soliton occupies a small
fraction of the symbol duration time. A great deal of at-
tention has recently been placed on the potential use of
the discrete nonlinear eigenvalues in fibre-optic channels.
Most of the current studies of discrete nonlinear eigen-
value communications are limited to exploring different
solitonic waveforms (forming a transmitted alphabet) in
a single symbol time slot. To avoid interaction between
neighbouring symbols a long guard interval is typically
used to suppress inter-symbol interactions, thus, limiting
spectral efficiency of such burst-mode transmission.

We propose here to use the well-known [1, 2] general
analytical N -soliton solutions of the NLSE (N-SS) (see

the Supplemental Material [25]) forN -symbol block mod-
ulation and coding. In a block transmission technique the
information symbols are arranged in the blocks separated
by some known symbols. Application of the N-SS allows
one to simultaneously code information over N symbol
time intervals. Four soliton parameters in principle of-
fer a possibility of four-dimensional modulation/coding
per soliton/symbol. Over the interval of N symbols, N -
soliton solutions can offer 4×N degrees of freedom.
Recall that single soliton solutions reads:

q(1)(z, t) = 2β
exp

[
−2iωt− 2i(ω2 − β2)z + iθ

]
cosh(2βt+ 4ωβz − δt)

. (2)

Here, obviously, 2β corresponds to soliton amplitude, 2ω
is soliton frequency, θ is pulse phase and δt/(2β) defines
soliton timing position. These four parameters can be
used for coding of information, i.e. amplitude, frequency,
phase and pulse position modulations, leading to various
high-level modulation formats. Note that interactions
between solitons are automatically accounted for in the
N -soliton solution. Therefore, in N-SS coding there is no
issue of soliton interactions that occur when solitons are
treated as separate entities.
The N-SS is defined by its scattering data/nonlinear

spectrum: two sets of N complex constants. The first
set corresponds to the complex eigenvalues of solitons
ξk = iβk + ωk, k = 1, ..., N . As discussed above, the
imaginary part βk > 0 defines corresponding (with the
index k) soliton amplitude and the real part ωk is re-
lated to the soliton frequency (and corresponding group
speed). The second set is given by the complex numbers
ck = Ck exp(iθk) with real parameters Ck and θk. For the
well separated solitons, parameters Ck define timing posi-
tions of solitons in the following way: δtk = ln[Ck/(2βk)],
while parameters θk define soliton phases. Based on the
structure of the solitonic scattering data, the possible
data coding of N-SS form two natural groups classified
as: amplitude-frequency modulation and pulse position-
phase modulation. In general, there are 4 × N free pa-
rameters that can be used for modulation.
The generation of modulated (i.e. encoded) N-SS sig-

nal at the transmitter requires an algorithmic realisa-
tion of IST/NFT in the encoder. Here, to find the N-
SS we use the standard factorisation of the GLME, that
leads to the well known exact formulae (see the Sup-
plemental Material [25]). Alternatively, the N-SS can
be obtained by algebraic versions of IST such as the
Zakharov-Shabat dressing method [31], Darboux trans-
formation [32], method of Hirota [33] and by the IST TIB
algorithm. Note, that all these approaches are numeri-
cally unstable at large N , that limits their applications
(see the Supplemental Material [25]). The kernel Ω(z, t)
of the GLME for the N-SS has the following form:

Ω(N)(t, z) =

N∑
k=1

ck(z)e
−iξkt . (3)
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The sum in Eq.(3) is similar to the Fourier series, how-
ever, the ”frequencies” ξk, in general, are complex num-
bers. Formally, the N-SS can be written as IST/Inverse
NFT of the kernel (3):

q(N)(z, t) = IST [Ω(N)(z, t)] . (4)

In what follows, for the sake of simplicity, the index (N)
will be omitted. We assume that coding/modulation is
applied at z = 0 (encoder) and decoding/demodulation
(decoder) at z = L. The IST/NFT method links the
nonlinear spectrum z = 0 and z = L by the following
simple phase shift:

ck(L) = ck(0) exp
(
−2iξ2kL

)
, k = (1, ..., N) . (5)

Expressions (4) and (5) formally solve the problem
of compensation of signal distortions in the communi-
cation channels described by the NLSE. We believe,
that formula (3) can offer some advantages for encod-
ing/decoding operations compared to the traditionally
used formula (4).

Our central idea is to use the N-SS kernel (3) for the
modulation of the information data. In this case the
number of numerical operations at the decoder is re-
duced. In the proposed scheme the decoding operation
requires to recover only the kernel (3) at z = 0 by solv-
ing the direct scattering problem and by application of a
simple transformation (5). Moreover, as we will demon-
strate, the analogy of the N-SS kernel (3) with the Fourier
series allows to introduce the OFDM scheme for the dis-
crete spectrum.

SOLITONIC OFDM METHOD

In this section we introduce a soliton OFDM (SOFDM)
technique in which the GLME kernel can be efficiently
used for encoding/decoding 2×N position-phase parame-
ters. The key idea can be understood from the expression
for the N-soliton kernel (3). The kernel would be similar
to the conventional OFDM in case of real ξk. Therefore,
we impose special conditions on the complex soliton pa-
rameters ξk. Namely, we consider N-SS with eigenvalues
ξn = ωn+iA. In this case solitons have equal amplitudes,
but different equidistantly selected frequencies. Thus,
the GLME kernel (3) at the beginning of the line is given
by the finite Fourier series multiplied by eAt:

Ω(0, t) = eAt
N∑

k=1

cke
−iωkt . (6)

This greatly simplifies the processing of such signals.
Now, without loss of generality, we consider modula-

tion over phase θn, while the pulse positions δn are left
unmodulated. As a particular example of the SOFDM
encoding we consider Ñ -phase-shift keying (Ñ -PSK)

modulated N-SS. To apply the SOFDM over the finite
time slot T we introduce the discrete time grid:

tm = (m− 1)T/N, m = 1, ..., N. (7)

The orthogonality of Fourier harmonics is given by the
following condition:

tmωn = 2π(m− 1)(n− 1)/N, m, n = 1, ..., N . (8)

Similar to the standard OFDM, the FFT makes it possi-
ble to determine parameters of signal modulation cn by
O(N lnN) arithmetic operations:

cn = FFT [Ω(0, tm) exp(−Atm)] . (9)

To compute the scattering data from the received sig-
nal q(t, L) one can use any available algorithm of the
direct NFT. Here, without loss of generality, we use the
direct TIB algorithm calculating the entire signal ker-
nel in time domain by solving the GLME (see Supple-
mental Material [25] and [24]). The kernel contains
all scattering data information: soliton eigenvalue po-
sitions (corresponding to amplitude and frequency mod-
ulations), pulse positions and phases (4×N parameters).
Here we focus only on a phase modulation to illustrate
the proposed concept. The eigenvalue modulation is also
possible, but it faces challenges in terms of efficiency and
stability (see Supplemental Material [25]).

For illustration purposes we choose the minimum pos-
sible number of time samples M = N . But actually, the
value of M depends on the algorithm of the direct scat-
tering transform at the receiver and usually M > N . At
the transmitter, we use the IFFT to obtain the kernel (6)
from the given data encoded by the phases cn and then
solve the inverse scattering problem as described in the
Supplemental Material [25] to generate the input optical
N-SS signal q(0, tm).

We test the SOFDM method in numerical simulations
of data transmission by the use of quaternary phase-
shift keying (QPSK) modulated 6-SS. In Fig. 1 (left) we
present an example of a 6-soliton signal at the beginning
and at the end of the transmission line of length L = 2000
km. Using the direct TIB method we recover the encoded
kernel that presented in Fig. 1 (right). To avoid signal
expansion, we arrange the solitons in order of descend-
ing velocity so that the slowest soliton occupies the first
position in the signal while the fastest soliton starts prop-
agation from the signal end. However, we would like to
stress that the practical implementation of the solitonic
OFDM scheme requires further development of fast noise-
stable methods for solving the direct scattering problem
that we consider in the Discussion section.
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FIG. 1: LEFT: The modulus of 6-soliton solution at the be-
ginning (q0, red dashed line) and at the end (q1, blue solid
line) of the NLSE governed transmission line.
RIGHT: 6-soliton normalized kernel of the GLME equations
at the beginning of the transmission line: |Ω(0, t)exp(−At)|.
Blue solid line – the exact normalized kernel encoded by the
SOFDM method with QPSK, red dashed line – the same ker-
nel restored by the use of direct TIB method.

KERNEL CODING OF THE CONTINUOUS
NONLINEAR SPECTRUM OFDM

The kernel of the GLME for the continuous spectrum
is presented in the following form:

Ω(R)(0, t) = R(0, t) =
1

2π

∫ ∞

−∞
rωe

−iωtdω . (10)

Here rω is the reflection coefficient of the Zakharov-
Shabat system for the given signal q(R)(0, t) while R(0, t)
is commonly referred to as a signal response function.
Similar to the discrete spectrum case, the IST links the
continuous spectrum at z = 0 and z = L by the following
relation:

rω(L) = rω(0) exp
(
−2iω2L

)
. (11)

The general idea to apply the OFDM scheme to the
continuous nonlinear spectrum was previously considered
in the framework of the so-called ”nonlinear inverse syn-
thesis” method [17, 34]. This approach, whilst promising,
has an important challenge – how to control the signal
characteristics in the time domain? Indeed, the reflection
coefficient r(ω) which was chosen for encoding informa-
tion is nontrivially coupled with the signal via IST.

Here, we propose to apply the additional window trans-
formation to the kernel Ω(R)(0, t) in the time domain, as
a method of controlling signal parameters. For IST-based
schemes the strong localisation of signal in time slots
is highly critical to avoid nonlinear interactions between
neighbouring symbol intervals. Bearing in mind the lin-
ear limit (q(R)(z, t) → 2Ω(R)(z, t)) we conclude, that well
localised (in time domain) signals should correspond to
the localised kernel at least in a weakly nonlinear case.
We have examined different window transformation func-
tions known from the linear communication theory (see,
for instance [35]) and found that the excellent signal lo-
calisation in time is achieved for window functions with
smooth polynomial fronts.

Figure 2 demonstrates signal generation at the begin-
ning of the transmission line. We start from 16 Fourier
harmonics encoded using the OFDM 8-PSK scheme.
Then we apply the window transformation f(t) similar
to the well known Lorentzian function:

F (t) =
Ã

[Γ(t− t0)]2 + 1
, (12)

to localise signal in time slot. Here Ã, Γ are the pa-
rameters of the window transformation corresponding to
the characteristic amplitude and width of the modulated
kernel and t0 corresponds to the centre of the time slot.
We also add to the window transformation function (12)
exponentially decaying tails which do not affect the gen-
eral shape of the signal, but helps to cancel interactions
between neighbouring bursts. Finally, we find the signal
profile using the inverse TIB method (Fig. 2, right, red).

FIG. 2: LEFT: 16 encoded kernel harmonics (grey, solid line)
and window function (black, dashed line). Parameters of
the window transformation function (12) are the following:

Ã = 15, Γ = 20.
RIGHT: The double kernel (blue, solid line) obtained by mul-
tiplying the encoded harmonics by the window function and
corresponding signal obtained by the use of the inverse TIB
algorithm (red, dashed line). The inset picture shows the ab-
solute value of signal Fourier spectrum, frequency index n is
defined in (8))

.

Next, we study the dependence of signal shape on the
parameters Ã and Γ of the modulated kernel. We have
found that varying the kernel window function parame-
ters allows us to control the characteristics of the gener-
ated signal without affecting the information content as
illustrated in Fig. 3. Figure 4 presents the results of nu-
merical modelling of a burst mode signal transmission in
the NLSE channel (with noise) with a total propagation
distance L of 1000km and SNR=19.7 dB. The modelling
was performed using the standard split-step method with
adding noise at each numerical spatial step that corre-
sponds to the distributed noise model (see e.g. [11, 12]).
We have found that the direct TIB algorithm remains
stable for considered SNR values. Interestingly, better
decoding results can be achieved using only the first (left)
part of the pulse. This is not surprising since the direct
TIB algorithm successively recover the kernel from the
left to the right end of the signal. Thus, the right part
of the recovered kernel is additionally affected by noise
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distortions accumulated during the calculation of the left
kernel part.

FIG. 3: Dependence of signal from the parameters of kernel
window transformation function (12).

FIG. 4: LEFT: Propagation of the burst mode signal in the
model NLSE channel with L=1000km and SNR=19.7 dB.
Blue solid lines correspond to the signal at the beginning of
the line, red dashed lines show the signal at the end of the line.
Parameters of of the window transformation function are the
same as in the Fig. 2. The bottom picture corresponds to the
encoded (blue, solid lines) and decoded using the direct TIB
algorithm (red, dashed lines) kernel harmonics for the central
burst interval.
RIGHT: Constellation diagram for the central burst interval
(statistics on a 103 randomly encoded initial signals).

DISCUSSION AND CONCLUSION

In this work, we proposed and examined new ap-
proaches to coding information over the kernel of the
GLME. We have considered both the discrete (solitonic)
and continuous part of scattering data. We demonstrated
that application of the direct TIB method allowes one to
recover the most stable part of the kernel, that is an ad-
vantage in the presence of distributed noise.

We have proposed, to the best of our knowledge for
the first time, to use the general N-soliton solution of the
NLSE for simultaneous coding of N symbols involving
4×N coding parameters, instead of separate N solitons.
As a particular sub-class of the general schemes we exam-
ined a soliton orthogonal frequency division multiplexing
technique that is based on the choice of identical imagi-
nary parts of N-soliton solution eigenvalues, correspond-

ing to equidistant soliton frequencies making it similar
to the conventional OFDM scheme. This allows us to
use the efficient fast Fourier transform algorithm to re-
cover the data. We would like to point out that efficient
implementation of numerical recovery of solitonic kernels
by solving GLME requires the development of numerical
algorithms, which are stable against additive noise.

For the continuous spectrum we have tested stability
of the direct TIB method against the additive noise and
proposed to use the localised kernel in the time domain to
control properties of the corresponding generated signal.
The latter can be considered as a novel realisation of the
”nonlinear inverse synthesis” method [17, 34].

We demonstrated that the mathematical properties of
the NLSE can be used for introducing fundamentally
novel (compared to the linear communication theory)
methods for coding and detection of signal setting foun-
dation for the nonlinear communication theory.
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NUMERICAL APPROACHES FOR INVERSE
AND DIRECT SCATTERING TRANSFORM

In this paragraph we briefly overview and remind ba-
sic information concerning numerical Inverse Scattering
Transform (IST) which is used in the main text of our
paper [1]. First, we write down the Gelfand-Levitan-
Marchenko equations (GLME) in the standard form for
the left scattering problem at fixed distance (e.g. z = 0):

A∗
1(t, s) +

∫ t

−s

A2(t, τ)Ω(s+ τ)dτ = 0,

−A∗
2(t, s) +

∫ t

−s

A1(t, τ)Ω(s+ τ)dτ +Ω(t+ s) = 0,

Ω(t) ≡ Ω(z = 0, t),

−t ⩽ s < t, 0 ⩽ t ⩽ Ts. (1)

Here A1(t, s) and A2(t, s) are the auxiliary complex func-
tions that links together the kernel Ω and solution q of
the NLSE via the GLME (1) and the following relation:

q(z = 0, t) = −2A∗
2(t, t) . (2)

The propagation problem is solved by the use of a simple
formulae for scattering data evolution (see Eq. (5) and
Eq. (11) in [1]).

In the general case numerical solution of an integral
equation requires ∼ M3 operations (recall that M is the
number of signal discretisation points). To reconstruct
the whole signal q(tm) we need to perform this procedure
at all points of the discrete grid (formula (7) in [1]) and,
thus, the total cost ∼ M4 operations, that is not feasible
for practical numerical implementation.

In this work we use the efficient Toeplitz inner-
bordering (TIB) numerical scheme for both the inverse
and direct scattering transform. Indeed, as it was
shown Frumin and co-authors (reference [23] in [1]) the
GLME (1) can be rewritten in the Toeplitz form by ap-
plying a simple transformation:

u(t, x) = A1(t, t− x) ,

v(t, y) = −A∗
2(t, y − t) . (3)

Now the GLME contains Toeplitz-type kernel Ω(y − x):

u(t, x)−
∫ 2t

−x

Ω∗(y − x)v(t, y)dy = 0,

v(t, y) +

∫ y

0

Ω(y − x)u(t, x)dx+Ω(y) = 0 , (4)

and, as a result, the numerical TIB IST takes only M2

operations (see details in reference [23] in [1]). Moreover,
recently Frumin and co-authors have demonstrated (ref-
erence [24] in [1]) that the TIB algorithm can be reversely
applied to the GLME (4), i.e. it allows to find the kernel
Ω(tm) from the known signal q(tm). Again, the required
number of numerical operations is M2. The numerical
schemes and details can be found in references [23,24]
in [1].
Here [1] we apply both inverse and direct TIB algo-

rithm to the continuous spectrum signals. For the dis-
crete spectrum case we apply only direct TIB method
to recover the kernel, meanwhile to create signal at the
beginning of the transmission line we use exact N-SS,
described in the next paragraph.

N-soliton solutions of the NLSE

For the discrete spectrum kernel (see formula (3) in [1])
factorization of the GLME (1) leads to the system of lin-
ear algebraic equations (see, for instance the monograph
of Lamb – reference [7] in [1]). Then, the N-SS can be
found in the following exact form:

q(N)(z = 0, t) = −2 ⟨Ψ(t)| (Ê+ M̂(t)∗M̂(t))−1 |Φ(t)⟩ .
(5)

Here Ê is N ×N identity matrix,

⟨Ψ(t)| =
⟨
c1e

−iξ1t, ..., cNe−iξ1t
∣∣ , (6)

⟨Φ(t)| =
⟨
e−iξ1t, ..., e−iξ1t

∣∣ ,
M̂k,j(t) = cj

ei(ξ
∗
k−ξj)t

ξ∗k − ξj
,

and parameters ck are defined in [1].
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To the best of our knowledge all the existing discrete
spectrum numerical IST algorithms are unstable at large
N , that can be understood by looking at the exact N-SS
formulae (5),(6). Indeed, the eigenvalues ξk are complex

and, thus, the matrix Ê + M̂(t)∗M̂(t) in (5) may be-
come ill-conditioned at large |t|. In such cases we use the
arbitrary precision arithmetics to obtain accurate N-SS
signal. Recently, A.A.Gelash and D.S. Agafontsev found
that numerical realisation of the Zakharov-Shabat dress-
ing method can be stably used up to N ∼ 32 soliton
solutions (see the reference [26] in [1]). Application of
the dressing method to our kernel-based approach is a
nontrivial task, however we believe that this can be an
interesting direction for future research.

PARAMETRIC KERNEL DECODING

In this paragraph we discuss the N-SS kernel general
parametric encoding/decoding schemes involving 4 × N
coding parameters. Let us write the N-SS kernel (for-
mula (3) in [1]) as a time series on the discrete grid (see
formula (7) in [1]):

Ωm ≡ Ω(tm) = (7)

=

N∑
k=1

cke
−iξktm =

N∑
k=1

cke
−iξkT (m−1) =

N∑
k=1

ckz
m−1
k .

Parameters zk = exp(−iξkT ) in (7) are defined by the
soliton eigenvalues ξk and by the value of time slot T .
Here, we again choose the minimum possible number of
time samples M = N . Then, for the decoding problem
we obtain system of equations with the Vandermonde
matrix:

z01 , z02 , ..., z0N
z11 , z12 , ..., z1N
... ... ... ...

zN−1
1 , zN−1

2 , ..., zN−1
N ,




c1
c2
...
cN

 =


Ω1

Ω2

...
ΩN

 .

(8)
Now we consider both position-phase modulation and
amplitude-frequency modulation of the N-SS kernel and
discuss numerical problems that occur in general case.

Position-phase modulation

Suppose we know the eigenvalues ξk and hence the pa-
rameters zk = exp(−iξk). The decoding problem is to
find the parameters ck by the measured kernel samples
Ωi, that can be done by solving system (8). However, the
straightforward numerical algorithm based, for example,
on Gauss elimination in a general case is extremely chal-
lenging since the Vandermonde matrix (8) exponentially
fast becomes ill-conditioned with the increase of N (see

the reference [27] in [1]). On the other hand, the Vander-
monde matrix belongs to the class of structured matrices
for which the effective numerical algorithms have been
developed (see the reference [28] in [1]). By applying the
effective matrix inversion algorithm the kernel decoding
can be performed using N2 operations, however, the nu-
merical stability restricts N by around ∼ 60 harmonics
(see, for example the reference [29] in [1]).
The inversion of the Vandermonde matrix becomes nu-

merically stable at any N when zk are the complex k-
th roots of unity. For the N-SS kernel this is possible
only when ξk have identical imaginary parts (that can
be moved to the right part of the matrix system (8)),
i.e. in the case presented by formula (6) in [1]. The ad-
ditional harmonics orthogonality condition (formula (8)
in [1]) allows us to use the FFT/IFFT algorithms instead
of matrix inversion operations, that motivated us to focus
on this elegant encoding scheme [1].

Amplitude-frequency modulation

Another possibility is to use the eigenvalues ξk as the
carriers of information. They have to be found from the
measured kernel samples Ωm, while the shift-phase pa-
rameters ck are all known and are not used for coding
of information. The parametric approach based on the
Prony’s method (see, for example see the reference [30],
chapter 11 in [1]) uses the following master polynomial

ϕ(z) =

N∏
n=1

(z − zk)
n =

N∑
n=0

anz
n, a0 = 1 , (9)

with the complex roots zk. The coefficients an of the
polynomial (9) can be determined by solving the Toeplitz
system of equations:

ΩN , ΩN−1, ..., Ω1

ΩN+1, ΩN , ..., Ω2

... ... ... ...
Ω2N−1, Ω2N−2, ..., ΩN ,




a1
a2
...
aN

 =


ΩN+1

ΩN+2

...
Ω2N

 .

(10)
Numerical solution of the problem (10) can be obtained
by the use of Levinson-Durbin-Trench algorithm through
the O(N2) arithmetic operations (see the reference [28]
in [1]). However, the subsequent roots finding of the mas-
ter polynomial ϕ(z) is the hard numerical problem for
the large number of samples N . For example, the well
known factorization algorithm of Jenkins and Traub be-
comes numerically unstable at N ∼ 100 (see the reference
[35] in [1]).
We note, that in the case of continuous spectrum ker-

nel (formula (10) in [1]) the corresponding Vandermonde
matrix can be always stably inverted since it becomes
Fourier matrix.
We conclude that the general (parametric) N-SS kernel

decoding requires matrix inversion and/or finding roots
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of the polynomial in the decoder. Although, the ad-
vanced numerical algorithms with a relatively small num-
ber of operations ∼ N2 can be exploited, their stability
against large number of harmonics and additive noise re-
quires a separate comprehensive analysis that is beyond
the scope of this Letter.
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