165 research outputs found

    Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach

    Full text link
    The long-term distributions of trajectories of a flow are described by invariant densities, i.e. fixed points of an associated transfer operator. In addition, global slowly mixing structures, such as almost-invariant sets, which partition phase space into regions that are almost dynamically disconnected, can also be identified by certain eigenfunctions of this operator. Indeed, these structures are often hard to obtain by brute-force trajectory-based analyses. In a wide variety of applications, transfer operators have proven to be very efficient tools for an analysis of the global behavior of a dynamical system. The computationally most expensive step in the construction of an approximate transfer operator is the numerical integration of many short term trajectories. In this paper, we propose to directly work with the infinitesimal generator instead of the operator, completely avoiding trajectory integration. We propose two different discretization schemes; a cell based discretization and a spectral collocation approach. Convergence can be shown in certain circumstances. We demonstrate numerically that our approach is much more efficient than the operator approach, sometimes by several orders of magnitude

    Transport in time-dependent dynamical systems: Finite-time coherent sets

    Full text link
    We study the transport properties of nonautonomous chaotic dynamical systems over a finite time duration. We are particularly interested in those regions that remain coherent and relatively non-dispersive over finite periods of time, despite the chaotic nature of the system. We develop a novel probabilistic methodology based upon transfer operators that automatically detects maximally coherent sets. The approach is very simple to implement, requiring only singular vector computations of a matrix of transitions induced by the dynamics. We illustrate our new methodology on an idealized stratospheric flow and in two and three dimensional analyses of European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis data

    How well-connected is the surface of the global ocean?

    Get PDF
    The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches

    Almost sure invariance principle for random piecewise expanding maps

    Full text link
    We prove a fiberwise almost sure invariance principle for random piecewise expanding transformations in one and higher dimensions using recent developments on martingale techniques

    Optimally coherent sets in geophysical flows: A new approach to delimiting the stratospheric polar vortex

    Full text link
    The "edge" of the Antarctic polar vortex is known to behave as a barrier to the meridional (poleward) transport of ozone during the austral winter. This chemical isolation of the polar vortex from the middle and low latitudes produces an ozone minimum in the vortex region, intensifying the ozone hole relative to that which would be produced by photochemical processes alone. Observational determination of the vortex edge remains an active field of research. In this letter, we obtain objective estimates of the structure of the polar vortex by introducing a new technique based on transfer operators that aims to find regions with minimal external transport. Applying this new technique to European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 three-dimensional velocity data we produce an improved three-dimensional estimate of the vortex location in the upper stratosphere where the vortex is most pronounced. This novel computational approach has wide potential application in detecting and analysing mixing structures in a variety of atmospheric, oceanographic, and general fluid dynamical settings

    Lagrangian dynamical geography of the Gulf of Mexico

    Full text link
    We construct a Markov-chain representation of the surface-ocean Lagrangian dynamics in a region occupied by the Gulf of Mexico (GoM) and adjacent portions of the Caribbean Sea and North Atlantic using satellite-tracked drifter trajectory data, the largest collection so far considered. From the analysis of the eigenvectors of the transition matrix associated with the chain, we identify almost-invariant attracting sets and their basins of attraction. With this information we decompose the GoM's geography into weakly dynamically interacting provinces, which constrain the connectivity between distant locations within the GoM. Offshore oil exploration, oil spill contingency planning, and fish larval connectivity assessment are among the many activities that can benefit from the dynamical information carried in the geography constructed here.Comment: Submitted to Scientific Report

    The Recoverable Robust Tail Assignment Problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Institute for Operations Research and the Management Sciences (INFORMS) via the DOI in this record Schedule disruptions are commonplace in the airline industry with many flight-delaying events occurring each day. Recently there has been a focus on introducing robustness into airline planning stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved using column generation in the master and subproblems of the Benders decomposition. We implement a two-phase algorithm for the Benders decomposition incorporating the Magnanti-Wong [21] enhancement techniques. The RRTAP includes costs due to flight delays, cancellation, and passenger rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare our tail assignment solution with the tail assignment generated using a connection cost function presented in Gr¨onkvist [15]. Using airline data we demonstrate that by developing a better tail assignment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.Australian Research Council Centre of Excellence for MathematicsMASCOS

    Spectral degeneracy and escape dynamics for intermittent maps with a hole

    Full text link
    We study intermittent maps from the point of view of metastability. Small neighbourhoods of an intermittent fixed point and their complements form pairs of almost-invariant sets. Treating the small neighbourhood as a hole, we first show that the absolutely continuous conditional invariant measures (ACCIMs) converge to the ACIM as the length of the small neighbourhood shrinks to zero. We then quantify how the escape dynamics from these almost-invariant sets are connected with the second eigenfunctions of Perron-Frobenius (transfer) operators when a small perturbation is applied near the intermittent fixed point. In particular, we describe precisely the scaling of the second eigenvalue with the perturbation size, provide upper and lower bounds, and demonstrate L1L^1 convergence of the positive part of the second eigenfunction to the ACIM as the perturbation goes to zero. This perturbation and associated eigenvalue scalings and convergence results are all compatible with Ulam's method and provide a formal explanation for the numerical behaviour of Ulam's method in this nonuniformly hyperbolic setting. The main results of the paper are illustrated with numerical computations.Comment: 34 page
    • …
    corecore