7 research outputs found

    Recruitment of Thr 319-phosphorylated Ndd1p to the FHA domain of Fkh2p requires Clbkinase activity: a mechanism for CLB cluster gene activation

    No full text
    Activation of the CLB gene cluster through the assembly of Mcm1p–Fkh2p complexes at target promoters is essential for mitotic entry and transition through M phase. We show that the activation of this mitotic transcriptional program is dependent on the recruitment of Ndd1p, a coactivator that performs its essential function by acting through Fkh2p. Although an essential gene, NDD1 is dispensable in cells expressing a truncated form of Fkh2p lacking its C terminus. When phosphorylated on T319, Ndd1p is recruited to CLB cluster promoters by association with the forkhead-associated (FHA) domain of Fkh2p. Substitution of T319 for alanine significantly reduces recruitment of Ndd1p, resulting in loss of normal transcriptional regulation, severe impairment of cell growth, and a budding defect reminiscent of cells with a Cdk-Clbkinase deficiency. Finally, we show that phosphorylation of T319 and recruitment of Ndd1p to CLB2 and SWI5 promoters is dependent on Cdc28-Clbkinase activity. These data provide a model describing the activation of G2/M transcription through the phosphorylation of Ndd1p by Cdc28-Clb kinase activity

    Identification of a parathyroid hormone in the fish Fugu rubripes

    No full text
    A PTH gene has been isolated from the fish Fugu rubripes. The encoded protein of 80 amino acid has the lowest homology with any of the PTH family members. Fugu PTH(1-34) had 5-fold lower potency than human PTH(1-34) in a mammalian cell system

    Protein tyrosine phosphatase hPTPN20a is targeted to sites of actin polymerization

    No full text
    The human genome encodes 38 classical tyrosine-specific PTPs (protein tyrosine phosphatases). Many PTPs have been shown to regulate fundamental cellular processes and several are mutated in human diseases. We report that the product of the PTPN20 gene at the chromosome locus 10q11.2 is alternatively spliced to generate 16 possible variants of the classical human non-transmembrane PTP 20 (hPTPN20). One of these variants, hPTPN20a, was expressed in a wide range of both normal and transformed cell lines. The catalytic domain of hPTPN20 exhibited catalytic activity towards tyrosyl phosphorylated substrates, confirming that it is a bona fide PTP. In serum-starved COS1 cells, hPTPN20a was targeted to the nucleus and the microtubule network, colocalizing with the microtubule-organizing centre and intracellular membrane compartments, including the endoplasmic reticulum and the Golgi apparatus. Stimulation of cells with epidermal growth factor, osmotic shock, pervanadate, or integrin ligation targeted hPTPN20a to actin-rich structures that included membrane ruffles. The present study identifies hPTPN20a as a novel and widely expressed phosphatase with a dynamic subcellular distribution that is targeted to sites of actin polymerization
    corecore