42 research outputs found

    Sensitivity to Experiencing Alcohol Hangovers: Reconsideration of the 0.11% Blood Alcohol Concentration (BAC) Threshold for Having a Hangover

    Get PDF
    The 2010 Alcohol Hangover Research Group consensus paper defined a cutoff blood alcohol concentration (BAC) of 0.11% as a toxicological threshold indicating that sufficient alcohol had been consumed to develop a hangover. The cutoff was based on previous research and applied mostly in studies comprising student samples. Previously, we showed that sensitivity to hangovers depends on (estimated) BAC during acute intoxication, with a greater percentage of drinkers reporting hangovers at higher BAC levels. However, a substantial number of participants also reported hangovers at comparatively lower BAC levels. This calls the suitability of the 0.11% threshold into question. Recent research has shown that subjective intoxication, i.e., the level of severity of reported drunkenness, and not BAC, is the most important determinant of hangover severity. Non-student samples often have a much lower alcohol intake compared to student samples, and overall BACs often remain below 0.11%. Despite these lower BACs, many non-student participants report having a hangover, especially when their subjective intoxication levels are high. This may be the case when alcohol consumption on the drinking occasion that results in a hangover significantly exceeds their “normal” drinking level, irrespective of whether they meet the 0.11% threshold in any of these conditions. Whereas consumers may have relative tolerance to the adverse effects at their “regular” drinking level, considerably higher alcohol intake—irrespective of the absolute amount—may consequentially result in a next-day hangover. Taken together, these findings suggest that the 0.11% threshold value as a criterion for having a hangover should be abandoned

    Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers

    Get PDF
    The risk of germline copy number variants (CNVs) in BRCA1 and BRCA2 pathogenic variant carriers in breast cancer is assessed, with CNVs overlapping SULT1A1 decreasing breast cancer risk in BRCA1 carriers.The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.Peer reviewe

    Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores

    Get PDF
    Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. Methods: 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)-negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.Peer reviewe

    Work-family conflict and employee psychiatric disorders: The national comorbidity survey.

    Full text link

    The great recession and employee alcohol use: A U.S. population study.

    No full text
    corecore