431 research outputs found

    Strong Electronic Correlation Effects in Coherent Multidimensional Nonlinear Optical Spectroscopy

    Get PDF
    We discuss a many−body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time−evolved many−body state due to correlated and uncorrelated multiple optical transitions, and use “Hubbard operator” density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including “pure dephasing”. Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two−dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time−delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter−Landau−level magnetoplasmon and magnetoroton excitations and compare to three−pulse four−wave−mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four−particle correlations between an electron−hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton−exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non−equilibrium co−operative phenomena in strongly correlated systems

    PANDORA: analysis of protein and peptide sets through the hierarchical integration of annotations

    Get PDF
    Derivation of biological meaning from large sets of proteins or genes is a frequent task in genomic and proteomic studies. Such sets often arise from experimental methods including large-scale gene expression experiments and mass spectrometry (MS) proteomics. Large sets of genes or proteins are also the outcome of computational methods such as BLAST search and homology-based classifications. We have developed the PANDORA web server, which functions as a platform for the advanced biological analysis of sets of genes, proteins, or proteolytic peptides. First, the input set is mapped to a set of corresponding proteins. Then, an analysis of the protein set produces a graph-based hierarchy which highlights intrinsic relations amongst biological subsets, in light of their different annotations from multiple annotation resources. PANDORA integrates a large collection of annotation sources (GO, UniProt Keywords, InterPro, Enzyme, SCOP, CATH, Gene-3D, NCBI taxonomy and more) that comprise ∼200 000 different annotation terms associated with ∼3.2 million sequences from UniProtKB. Statistical enrichment based on a binomial approximation of the hypergeometric distribution and corrected for multiple hypothesis tests is calculated using several background sets, including major gene-expression DNA-chip platforms. Users can also visualize either standard or user-defined binary and quantitative properties alongside the proteins. PANDORA 4.2 is available at http://www.pandora.cs.huji.ac.il

    Ultrafast Nonlinear Optical Response of Strongly Correlated Systems: Dynamics in the Quantum Hall Effect Regime

    Full text link
    We present a theoretical formulation of the coherent ultrafast nonlinear optical response of a strongly correlated system and discuss an example where the Coulomb correlations dominate. We separate out the correlated contributions to the third-order nonlinear polarization, and identify non-Markovian dephasing effects coming from the non-instantaneous interactions and propagation in time of the collective excitations of the many-body system. We discuss the signatures, in the time and frequency dependence of the four-wave-mixing (FWM) spectrum, of the inter-Landau level magnetoplasmon (MP) excitations of the two-dimensional electron gas (2DEG) in a perpendicular magnetic field. We predict a resonant enhancement of the lowest Landau level (LL) FWM signal, a strong non-Markovian dephasing of the next LL magnetoexciton (X), a symmetric FWM temporal profile, and strong oscillations as function of time delay, of quantum kinetic origin. We show that the correlation effects can be controlled experimentally by tuning the central frequency of the optical excitation between the two lowest LLs.Comment: 21 pages, 10 figure

    Intermittent atrial tachycardia facilitates atrial fibrillation by a shortening of activation recovery interval

    Get PDF
    Introduction: We recently observed in a chronic ovine model that a shortening of action potential duration (APD) as assessed by the activation recovery interval (ARI) may be a mechanism whereby pacing-induced atrial tachycardia (PIAT) facilitates atrial fibrillation (AF), mediated by a return to 1:1 atrial capture after the effective refractory period has been reached. The aim of the present study is to evaluate the effect of long term intermittent burst pacing on ARI before induction of AF.Methods: We specifically developed a chronic ovine model of PIAT using two pacemakers (PM) each with a right atrial (RA) lead separated by ∼2cm. The 1st PM (Vitatron T70) was used to record a broadband unipolar RA EGM (800 Hz, 0.4 Hz high pass filter). The 2nd was used to deliver PIAT during electrophysiological protocols at decremental pacing CL (400 beats, from 400 to 110ms) and long term intermittent RA burst pacing to promote electrical remodeling (5s of burst followed by 2s of sinus rhythm) until onset of sustained AF. ARI was defined as the time difference between the peak of the atrial repolarization wave and the first atrial depolarization. The mean ARIs of paired sequences (before and after remodeling), each consisting of 20 beats were compared.Results: As shown in the figure, ARIs (n=4 sheep, 46 recordings) decreased post remodeling compared to baseline (86±19 vs 103±12 ms, p<0.05). There was no difference in atrial structure as assessed by light microscopy between control and remodeled sheep.Conclusions: Using standard pacemaker technology, atrial ARIs as a surrogate of APDs were successfully measured in vivo during the electrical remodeling process leading to AF. The facilitation of AF by PIAT mimicking salvos from pulmonary veins is heralded by a significant shortening of ARI

    Physical and virtual carbon metabolism of global cities

    Get PDF
    Urban activities have profound and lasting effects on the global carbon balance. Here we develop a consistent metabolic approach that combines two complementary carbon accounts, the physical carbon balance and the fossil fuel-derived gaseous carbon footprint, to track carbon coming into, being added to urban stocks, and eventually leaving the city. We find that over 88% of the physical carbon in 16 global cities is imported from outside their urban boundaries, and this outsourcing of carbon is notably amplified by virtual emissions from upstream activities that contribute 33–68% to their total carbon inflows. While 13–33% of the carbon appropriated by cities is immediately combusted and released as CO2, between 8 and 24% is stored in durable household goods or becomes part of other urban stocks. Inventorying carbon consumed and stored for urban metabolism should be given more credit for the role it can play in stabilizing future global climate

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure

    Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations.

    Get PDF
    OBJECTIVE: Brugada syndrome (BrS) is characterized by ventricular tachyarrhythmias leading to sudden cardiac death and is caused, in part, by mutations in the SCN5A gene encoding the sodium channel Na(v)1.5. Fever can trigger or exacerbate the clinical manifestations of BrS. The aim of this work was to characterize the genetic and molecular determinants of fever-dependent BrS. METHODS: Four male patients with typical BrS ST-segment elevation in V1-V3 or ventricular arrhythmias during fever were screened for mutations in the SCN5A gene. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. The sodium currents (I(Na)) were analysed using the whole-cell patch clamp technique at various temperatures. Protein expression of WT and mutant channels was studied by Western blot experiments. RESULTS: Two mutations in SCN5A, L325R and R535X, were identified. Expression of the two mutant Na(v)1.5 channels in HEK293 cells revealed in each case a severe loss-of-function. Upon the increase of temperature up to 42 degrees C, we observed a pronounced acceleration of Na(v)1.5 activation and fast inactivation kinetics. Cardiac action potential modelling experiments suggest that in patients with reduced I(Na), fever could prematurely shorten the action potential by virtue of its effect on WT channels. Further experiments revealed that L325R channels are likely misfolded, since their function could be partially rescued by mexiletine or curcumin. In co-expression experiments, L325R channels interfered with the proper function of WT channels, suggesting that a dominant negative phenomenon may underlie BrS triggered by fever. CONCLUSIONS: The genetic background of BrS patients sensitive to fever is heterogeneous. Our experimental data suggest that the clinical manifestations of fever-exacerbated BrS may not be mutation specific

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
    corecore