4 research outputs found

    (In)Consistencies in responses to sodium bicarbonate supplementation: a randomised, repeated measures, counterbalanced and double-blind study

    Get PDF
    Objectives: Intervention studies do not account for high within-individual variation potentially compromising the magnitude of an effect. Repeat administration of a treatment allows quantification of individual responses and determination of the consistency of responses. We determined the consistency of metabolic and exercise responses following repeated administration of sodium bicarbonate (SB). Design and Methods: 15 physically active males (age 25 ± 4 y; body mass 76.0 ± 7.3 kg; height 1.77 ± 0.05 m) completed six cycling capacity tests at 110% of maximum power output (CCT 110% ) following ingestion of either 0.3 g.kg -1 BM of SB (4 trials) or placebo (PL, 2 trials). Blood pH, bicarbonate, base excess and lactate were determined at baseline, pre-exercise, post-exercise and 5-min post-exercise. Total work done (TWD) was recorded as the exercise outcome. Results: SB supplementation increased blood pH, bicarbonate and base excess prior to every trial (all p ≀0.001); absolute changes in pH, bicarbonate and base excess from baseline to pre-exercise were similar in all SB trials (all p > 0.05). Blood lactate was elevated following exercise in all trials (p ≀ 0.001), and was higher in some, but not all, SB trials compared to PL. TWD was not significantly improved with SB vs. PL in any trial (SB1: +3.6%; SB2 +0.3%; SB3: +2.1%; SB4: +6.7%; all p > 0.05), although magnitude-based inferences suggested a 93% likely improvement in SB4. Individual analysis showed ten participants improved in at least one SB trial above the normal variation of the test although five improved in none. Conclusions: The mechanism for improved exercise with SB was consistently in place prior to exercise, although this only resulted in a likely improvement in one trial. SB does not consistently improve high intensity cycling capacity, with results suggesting that caution should be taken when interpreting the results from single trials as to the efficacy of SB supplementation. Trial Registration: ClinicalTrials.gov NCT0247462

    Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions

    Get PDF
    Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H+) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO3) supplementation and determine the corresponding effects on severe intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO2% = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO3-]) following NaHCO3 ingestion. The intermittent exercise tests involved repeated 60 s work in their severe intensity domain and 30 s recovery at 20 W to exhaustion. Participants ingested either 0.3 g·kg bm-1 of NaHCO3 or a matched placebo of 0.21 g·kg bm-1 of sodium chloride prior to exercise. Exercise tolerance (+110.9 ± 100.6 s; 95% CI: 43.3 to 178 s; g = 1.0) and work performed in the severe intensity domain (+5.8 ± 6.6 kJ; 95% CI: 1.3 to 9.9 kJ; g = 0.8) were enhanced with NaHCO3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+4 ± 2.4 mmol·l-1; 95% CI: 2.2 to 5.9; g = 1.8), while blood [HCO3-] and pH remained elevated in the NaHCO3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance

    The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions

    Get PDF
    Purpose Exacerbated hydrogen cation (Hâș) production is suggested to be a key determinant of fatigue in acute hypoxic conditions. This study, therefore, investigated the effects of NaHCO3 ingestion on repeated 4 km TT cycling performance and post-exercise acid–base balance recovery in acute moderate hypoxic conditions. Methods Ten male trained cyclists completed four repeats of 2 × 4 km cycling time trials (TT1 and TT2) with 40 min passive recovery, each on different days. Each TT series was preceded by supplementation of one of the 0.2 g kg⁻Âč BM NaHCO3 (SBC2), 0.3 g kg⁻Âč BM NaHCO3 (SBC3), or a taste-matched placebo (0.07 g kg⁻Âč BM sodium chloride; PLA), administered in a randomized order. Supplements were administered at a pre-determined individual time to peak capillary blood bicarbonate concentration ([HCO3⁻]). Each TT series was also completed in a normobaric hypoxic chamber set at 14.5% FiO2 (~ 3000 m). Results Performance was improved following SBC3 in both TT1 (400.2 ± 24.1 vs. 405.9 ± 26.0 s; p = 0.03) and TT2 (407.2 ± 29.2 vs. 413.2 ± 30.8 s; p = 0.01) compared to PLA, displaying a very likely benefit in each bout. Compared to SBC2, a likely and possible benefit was also observed following SBC3 in TT1 (402.3 ± 26.5 s; p = 0.15) and TT2 (410.3 ± 30.8 s; p = 0.44), respectively. One participant displayed an ergolytic effect following SBC3, likely because of severe gastrointestinal discomfort, as SBC2 still provided ergogenic effects. Conclusion NaHCO3 ingestion improves repeated exercise performance in acute hypoxic conditions, although the optimal dose is likely to be 0.3 g kg⁻Âč BM

    Effects of Dietary Supplements on Adaptations to Endurance Training

    No full text
    corecore