1,396 research outputs found

    Dynamical q-deformation in quantum theory and the stochastic limit

    Full text link
    A model of particle interacting with quantum field is considered. The model includes as particular cases the polaron model and non-relativistic quantum electrodynamics. We show that the field operators obey q-commutation relations with q depending on time. After the stochastic (or van Hove) limit, due to the nonlinearity, the atomic and field degrees of freedom become entangled in the sense that the field and the atomic variables no longer commute but give rise to a new algebra with new commutation relations replacing the Boson ones. This new algebra allows to give a simple proof of the fact that the non crossing half-planar diagrams give the dominating contribution in a weak coupling regime and to calculate explicitly the correlations associated to the new algebra. The above results depend crucially on the fact that we do not introduce any dipole or multipole approximation.Comment: Latex, 11 page

    Dual variables for the SU(2) lattice gauge theory at finite temperature

    Full text link
    We study the three-dimensional SU(2) lattice gauge theory at finite temperature using an observable which is dual to the Wilson line. This observable displays a behaviour which is the reverse of that seen for the Wilson line. It is non-zero in the confined phase and becomes zero in the deconfined phase. At large distances, it's correlation function falls off exponentially in the deconfined phase and remains non-zero in the confined phase. The dual variable is non-local and has a string attached to it which creates a Z(2) interface in the system. It's correlation function measures the string tension between oppositely oriented Z(2) domains. The construction of this variable can also be made in the four-dimensional theory where it measures the surface tension between oppositely oriented Z(2) domains.Comment: 13 pages, LaTeX, 4 figures are included in the latex fil

    Anomalies without Massless Particles

    Full text link
    Baryon and lepton number in the standard model are violated by anomalies, even though the fermions are massive. This problem is studied in the context of a two dimensional model. In a uniform background field, fermion production arise from non-adiabatic behavior that compensates for the absence of massless modes. On the other hand, for localized instanton-like configurations, there is an adiabatic limit. In this case, the anomaly is produced by bound states which travel across the mass gap. The sphaleron corresponds to a bound state at the halfway point.Comment: (26 pages, 3 figures, uses harvmac and uufiles), UCSD/PTH 93-3

    Renormalization of the Hamiltonian and a geometric interpretation of asymptotic freedom

    Full text link
    Using a novel approach to renormalization in the Hamiltonian formalism, we study the connection between asymptotic freedom and the renormalization group flow of the configuration space metric. It is argued that in asymptotically free theories the effective distance between configuration decreases as high momentum modes are integrated out.Comment: 22 pages, LaTeX, no figures; final version accepted in Phys.Rev.D; added reference and appendix with comment on solution of eq. (9) in the tex

    2D Conformal Field Theories and Holography

    Get PDF
    It is known that the chiral part of any 2d conformal field theory defines a 3d topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3d topological theory that arises is a certain ``square'' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3d gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting ``holographic'' perspective on conformal field theories in 2 dimensions.Comment: 29+1 pages, many figure

    The Secret to Successful User Communities: An Analysis of Computer Associates’ User Groups

    Get PDF
    This paper provides the first large scale study that examines the impact of both individual- and group-specific factors on the benefits users obtain from their user communities. By empirically analysing 924 survey responses from individuals in 161 Computer Associates' user groups, this paper aims to identify the determinants of successful user communities. To measure success, the amount of time individual members save through having access to their user networks is used. As firms can significantly profit from successful user communities, this study proposes four key implications of the empirical results for the management of user communities

    Hidden Non-Abelian Gauge Symmetries in Doped Planar Antiferromagnets

    Full text link
    We investigate the possibility of hidden non-Abelian Local Phase symmetries in large-U doped planar Hubbard antiferromagnets, believed to simulate the physics of two-dimensional (magnetic) superconductors. We present a spin-charge separation ansatz, appropriate to incorporate holon spin flip, which allows for such a hidden local gauge symmetry to emerge in the effective action. The group is of the form SU(2)US(1)UE(1)SU(2)\otimes U_S(1) \otimes U_E(1), where SU(2) is a local non-Abelian group associated with the spin degrees of freedom, U_E(1) is that of ordinary electromagnetism, associated with the electric charge of the holes, and U_S(1) is a `statistical' Abelian gauge group pertaining to the fractional statistics of holes on the spatial plane. In a certain regime of the parameters of the model, namely strong U_S(1) and weak SU(2), there is the possibility of dynamical formation of a holon condensate. This leads to a dynamical breaking of SU(2)U(1)SU(2) \to U(1). The resulting Abelian effective theory is closely related to an earlier model proposed as the continuum limit of large-spin planar doped antiferromagnets, which lead to an unconventional scenario for two-dimensional parity-invariant superconductivity.Comment: 32 pages LATEX, one figure. (More details given in the passage from the Hubbard model to the long wavelength lattice gauge theory; one figure added; no changes in the conclusions.

    Patterns of photometric and chromospheric variation among Sun-like stars: A 20-year perspective

    Full text link
    We examine patterns of variation of 32 primarily main sequence stars, extending our previous 7-12 year time series to 13-20 years by combining b, y data from Lowell Observatory with similar data from Fairborn Observatory. Parallel chromospheric Ca II H and K emission data from the Mount Wilson Observatory span the entire interval. The extended data strengthen the relationship between chromospheric and photometric variation derived previously. Twenty-seven stars are deemed variable. On a year-to-year timescale young active stars become fainter when their Ca II emission increases while older less active stars such as the Sun become brighter when their Ca II emission increases. The Sun's total irradiance variation, scaled to the b and y filter photometry, still appears to be somewhat smaller than stars in our limited sample with similar mean chromospheric activity, but we now regard this discrepancy as probably due mainly to our limited stellar sampl

    Fitoconstituintes isolados da fração em diclorometano das cascas do tronco de Scutia buxifolia Reissek

    Get PDF
    Fracionamento cromatográfico da fração em diclorometano obtida do extrato etanólico das cascas do tronco de Scutia buxifolia Reissek (Rhamnaceae) conduziu ao isolamento de lupeol, β-sitosterol e estigmasterol. As estruturas foram identificadas através de técnicas espectroscópicas usuais, além da comparação com dados relatados na literatura. Os compostos isolados são relatados pela primeira vez para a espécie S. buxifolia.Fractionation of the dichloromethane soluble fraction from the ethanol extract of the stem bark of Scutia buxifolia Reissek (Rhamnaceae) led to the isolation of lupeol, β-sitosterol and stigmasterol. The structures of the isolates were elucidated by spectroscopic analysis and comparison with literature data. The isolated compounds are reported for the first time to the species S. buxifolia.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Impurity scattering and transport of fractional Quantum Hall edge state

    Full text link
    We study the effects of impurity scattering on the low energy edge state dynamic s for a broad class of quantum Hall fluids at filling factor ν=n/(np+1)\nu =n/(np+1), for integer nn and even integer pp. When pp is positive all nn of the edge modes are expected to move in the same direction, whereas for negative pp one mode moves in a direction opposite to the other n1n-1 modes. Using a chiral-Luttinger model to describe the edge channels, we show that for an ideal edge when pp is negative, a non-quantized and non-universal Hall conductance is predicted. The non-quantized conductance is associated with an absence of equilibration between the nn edge channels. To explain the robust experimental Hall quantization, it is thus necessary to incorporate impurity scattering into the model, to allow for edge equilibration. A perturbative analysis reveals that edge impurity scattering is relevant and will modify the low energy edge dynamics. We describe a non-perturbative solution for the random nn-channel edge, which reveals the existence of a new disorder-dominated phase, characterized by a stable zero temperature renormalization group fixed point. The phase consists of a single propagating charge mode, which gives a quantized Hall conductance, and n1n-1 neutral modes. The neutral modes all propagate at the same speed, and manifest an exact SU(n) symmetry. At finite temperatures the SU(n) symmetry is broken and the neutral modes decay with a finite rate which varies as T2T^2 at low temperatures. Various experimental predictions and implications which follow from the exact solution are described in detail, focusing on tunneling experiments through point contacts.Comment: 19 pages (two column), 5 post script figures appended, 3.0 REVTE
    corecore