10 research outputs found

    A Compact Two-Frequency Notch Filter for Millimeter Wave Plasma Diagnostics

    Get PDF
    Sensitive millimeter wave diagnostics in magnetic confinement plasma fusion experiments need protection from gyrotron stray radiation in the plasma vessel. Modern electron cyclotron resonance heating (ECRH) systems take advantage of multifrequency gyrotrons. This means that the frequency band of some millimeter wave diagnostics contains more than one narrow-band gyrotron-frequency line, which needs to be effectively suppressed. A compact standard waveguide notch filter based on coupled waveguide resonators with rectangular cross-section is presented which can provide very high suppression of several gyrotron frequencies and has low insertion loss of the passband

    Completion of the 8 MW Multi-Frequency ECRH System at ASDEX Upgrade

    Get PDF
    Over the last 15 years, the Electron Cyclotron Resonance Heating (ECRH) system at the ASDEX Upgrade tokamak has been upgraded from a 2 MW, 2 s, 140 GHz system to an 8 MW, 10 s, dual frequency system (105/140 GHz). Eight gyrotrons were in routine operation during the current experimental campaign. All gyrotrons are step-tunable operating at 105 and 140 GHz with a maximum output power of about 1 MW and 10 s pulse length. The system includes 8 transmission lines, mainly consisting of oversized corrugated waveguides (I.D. = 87 mm) with overall lengths between 50 and 70 meters including quasi-optical sections at both ends. Further improvements of the transmission lines with respect to power handling and reliability are underway

    Exploring fusion-reactor physics with high-power electron cyclotron resonance heating on ASDEX Upgrade

    Get PDF
    The electron cyclotron resonance heating (ECRH) system of the ASDEX Upgrade tokomak has been upgraded over the last 15 years from a 2MW, 2 s, 140 GHz system to an 8MW, 10 s, dual frequency system (105/140 GHz). The power exceeds the L/H power threshold by at least a factor of two, even for high densities, and roughly equals the installed ion cyclotron range of frequencies power. The power of both wave heating systems together (>10MW in the plasma) is about half of the available neutral beam injection (NBI) power, allowing significant variations of torque input, of the shape of the heating profile and of Qe/Qi, even at high heating power. For applications at a low magnetic field an X3-heating scheme is routinely in use. Such a scenario is now also forseen for ITER to study the first H-modes at one third of the full field. This versatile system allows one to address important issues fundamental to a fusion reactor: H-mode operation with dominant electron heating, accessing low collisionalities in full metal devices (also related to suppression of edge localized modes with resonant magnetic perturbations), influence of Te/Ti and rotational shear on transport, and dependence of impurity accumulation on heating profiles. Experiments on all these subjects have been carried out over the last few years and will be presented in this contribution. The adjustable localized current drive capability of ECRH allows dedicated variations of the shape of the q-profile and the study of their influence on non-inductive tokamak operation (so far at q95_{95}>5.3). The ultimate goal of these experiments is to use the experimental findings to refine theoretical models such that they allow a reliable design of operational schemes for reactor size devices. In this respect, recent studies comparing a quasi-linear approach (TGLF) with fully non-linear modeling (GENE) of non-inductive high-beta plasmas will be reported

    Simulation of Polarising and Reflector Gratings for High Power mm Waves

    Get PDF
    High power mm waves for fusion plasma heating need to be elliptically polarised to ensure good absorption in the plasma. In some scenarios, electron cyclotron resonance heating (ECRH) at higher harmonics (X3 and O2) is used, but this has significant shine-through because of low single pass absorption. Grating reflectors at the inboard strike point form a holographic mirror that reflects the beam back into the plasma. This paper investigates the optical properties and ohmic losses of both the polariser and the reflectors with the 3D fullwave code IPF-FD3D. The reflection properties of a reflector for ASDEX Upgrade and the improved ohmic losses of a waveguide polariser were confirmed

    Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation

    No full text
    The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power

    Beam tracing study for design and operation of two-pass electron cyclotron heating at ASDEX Upgrade

    Get PDF
    The electron cyclotron resonance heating system at ASDEX Upgrade (AUG) is currently being extended to eight similar Gyrotrons in total. Each Gyrotron operates at 105 and 140 GHz and is designed for up to 1 MW millimetre wave output power. A substantial part of the AUG program will focus on experimental conditions, where the plasma density may be above the X-2 cut-off density at 140 GHz. In order to cope with the high density, the heating system will operate in the O-2 mode scheme with potentially incomplete absorption in the first pass. Reflecting gratings installed into the heat shield on AUG’s inner column allow for a controlled second pass of the beam’s unabsorbed fraction. Thermocouple measurements serve to control the beam position on the grating. The beam geometry is being finalized for the launchers #1-4. Beam propagation is simulated with the TORBEAM code and previous high density experiments are used as a database. The geometry is optimized using three criteria: central deposition, high absorption and robustness of the beam dump after the second pass. The experimental conditions, and the plasma electron density in particular, may vary such that the Gaussian beam parameters of the incoming beam on the grating deviate from the design values. It is proposed to model the effect of the grating with an equivalent ellipsoidal mirror. Laboratory measurements are shown, which support this model
    corecore