698 research outputs found

    Evidence of a saturated gravity-wave spectrum throughout the atmosphere

    Get PDF
    The view adapted here is that the dominant mesoscale motions are due to internal gravity waves and show that previous and new vertical wave number spectra of horizontal winds are consistent with the notion of a saturation limit on wave amplitudes. It is also proposed that, at any height, only those vertical wave numbers m less than m sub asterisk are at saturation amplitudes, where m sub asterisk is the vertical wave number of the dominant energy-containing scale. Wave numbers m less than m sub asterisk are unsaturated, but experience growth with height due to the decrease of atmospheric density. The result is a saturated spectrum of gravity waves with both m sub asterisk decreasing and wave energy increasing with height. This saturation theory is consistent with a variety of atmospheric spectral observations and provides a basis for the notion of a universal spectrum of atmospheric gravity waves

    Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell

    Get PDF
    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies

    Mesospheric wave number spectra from Poker Flat MST radar measurements compared with gravity-wave model

    Get PDF
    The results of a comparison of mesospheric wind fluctuation spectra computed from radial wind velocity estimates made by the Poker Flat mesosphere-stratosphere-troposphere (MST) radar are compared with a gravity-wave model developed by VanZandt (1982, 1985). The principal conclusion of this comparison is that gravity waves can account for 80% of the mesospheric power spectral density

    Numerical Simulation for Droplet Combustion Using Lagrangian Hydrodynamics

    Get PDF
    A predictive model of spray combustion must incorporate models for the wide variety of physical environments in a practical combustor. In regions where droplets are closely spaced, combustion resembles a diffusion flame; where they are well separated, an envelope or wake flame results. The relative velocity field between the fuel droplets and oxidizer in influences boundary layer development about the droplet, recirculating flow patterns, and droplet shape and stability. A model must encompass these interacting temporal and spatial effects as well as complicated combustor boundaries. The objective of the current work is to develop the triangular gridding method for describing the individual and collective properties of vaporizing and burning fuel droplets

    Numerical simulations of fuel droplet flows using a Lagrangian triangular mesh

    Get PDF
    The incompressible, Lagrangian, triangular grid code, SPLISH, was converted for the study of flows in and around fuel droplets. This involved developing, testing and incorporating algorithms for surface tension and viscosity. The major features of the Lagrangian method and the algorithms are described. Benchmarks of the algorithms are given. Several calculations are presented for kerosene droplets in air. Finally, extensions which make the code compressible and three dimensional are discussed

    Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds

    Get PDF
    We previously considered various aspects of gravity wave penetration and effects at mesospheric and thermospheric altitudes, including propagation, viscous effects on wave structure, characteristics, and damping, local body forcing, responses to solar cycle temperature variations, and filtering by mean winds. Several of these efforts focused on gravity waves arising from deep convection or in situ body forcing accompanying wave dissipation. Here we generalize these results to a broad range of gravity wave phase speeds, spatial scales, and intrinsic frequencies in order to address all of the major gravity wave sources in the lower atmosphere potentially impacting the thermosphere. We show how penetration altitudes depend on gravity wave phase speed, horizontal and vertical wavelengths, and observed frequencies for a range of thermospheric temperatures spanning realistic solar conditions and winds spanning reasonable mean and tidal amplitudes. Our results emphasize that independent of gravity wave source, thermospheric temperature, and filtering conditions, those gravity waves that penetrate to the highest altitudes have increasing vertical wavelengths and decreasing intrinsic frequencies with increasing altitude. The spatial scales at the highest altitudes at which gravity wave perturbations are observed are inevitably horizontal wavelengths of ~150 to 1000 km and vertical wavelengths of ~150 to 500 km or more, with the larger horizontal scales only becoming important for the stronger Doppler-shifting conditions. Observed and intrinsic periods are typically ~10 to 60 min and ~10 to 30 min, respectively, with the intrinsic periods shorter at the highest altitudes because of preferential penetration of GWs that are up-shifted in frequency by thermospheric winds

    Simultaneous rocket and MST radar observation of an internal gravity wave breaking in the mesosphere

    Get PDF
    In June, 1983, the Structure and Atmospheric Turbulence Environment (STATE) rocket and Poker Flat Mesophere-Stratosphere-Troposphere radar campaign was conducted to measure the interaction between turbulence, electron density and electron density gradient that has produced unusually strong MST radar echoes from the summer mesosphere over Poker Flat, Alaska. Analysis or radar wind measurements and a concurrent wind and temperature profile obtained from a rocket probe carrying a three-axis accelerometer are given. The two data sets provide a fairly complete (and in some cases, redundant) picture of the breaking (or more correctly, the saturation) of a large-amplitude, low-frequency, long-wavelength internal gravity wave. The data show that small-scale turbulence and small-scale wave intensity is greatest at those altitudes where the large-scale wave-induced temperature lapse rate is most negative or most nearly unstable, but the wind shear due to the large-scale wave is a minimum. A brief review of linear gravity-wave theory is presented as an aid to the identification of the gravity-wave signature in the radar and rocket data. Analysis of the time and height cross sections of wind speed and turbulence intensity observed by the Poker Flat MST radar follows. Then, the vertical profile of temperature and winds measured by a rocket probe examined. Finally, the use of the independent data sets provided by the rocket and the radar are discussed and implications for theories of wave saturation are presented

    Nonmigrating semidiurnal tide over the Arctic determined from TIMED Doppler Interferometer wind observations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94847/1/jgrd15899.pd

    Oscillator Strengths for B-X, C-X, and E-X Transitions in Carbon Monoxide

    Get PDF
    Band oscillator strengths for electronic transitions in CO were obtained at the Synchrotron Radiation Center of the University of Wisconsin-Madison. Our focus was on transitions that are observed in interstellar spectra with the Far Ultraviolet Spectroscopic Explorer; these transitions are also important in studies of selective isotope photodissociation where fractionation among isotopomers can occur. Absorption from the ground state (X ^1Sigma^+ v'' = 0) to A ^1Pi (v'= 5), B ^1Sigma^+ (v' = 0, 1), C ^1Sigma^+ (v' = 0, 1), and E ^1Pi (v' = 0) was measured. Fits to the A - X (5, 0) band, whose oscillator strength is well known, yielded the necessary column density and excitation temperature. These parameters were used in a least-squares fit of the observed profiles for the transitions of interest to extract their band oscillator strengths. Our oscillator strengths are in excellent agreement with results from recent experiments using a variety of techniques. This agreement provides the basis for a self-consistent set of f-values at far ultraviolet wavelengths for studies of interstellar (and stellar) CO.Comment: 22 pages, 3 figures, ApJS (in press
    corecore