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NUMERICAL SIMULATION FOR DROPLET COMBUSTION USING LAGRANGIAN HYDRODYNAMICS

Martin J. Fritts, David E. Fyfe, and Elaine S. Oran
Laboratory for Computational Physics
Maval Research Iaboratory
Washington, DC 20375

A predictive model of spray combustion mist incorporate models for the wide
variety of physical environments in a practical combustor. In regions where
droplets are closely spaced, combustion resembles a diffusion flame; where they
are well-separated, an envelope or wake flame results. The relative velocity
field between the fuel droplets and oxidizer influences boundary layer develop-
ment about the droplet, recirculating flow patterns, and droplet shape and
stability. A model mist encompass these interacting temporal and spatial
effects as well as complicated combustor boundaries. The objective of the
current work is to develop the triangular gridding method for describing the
individual and collective properties of vaporizing and burning fuel droplets.

Our approach to this problem has been to modify the basic two dimensional
Lagrangian model [1] to simulate flows in and about fuel droplets [2]. This
general-connectivity triangular grid permits accurate representation of
boundaries as well as material surfaces and interfaces. It also allows variable
resolution through the insertion of new cells as required to maintain accuracy.
The finite-difference operators for divergence, curl and gradient are
constructed to exactly reflect the properties of the continuum operators. The
construction assures conservation of vorticity and mass and provides a
determination of the local grid connectivity based on convergence criteria for
the solution of Poisson's Equation. Extensions of the model have been made in
the same spirit: finite-difference operators conform to the continuum limit and
physical quantities are conserved properly. An important factor to note is that
development of this method is entirely original work; there is no basic lore to
fall back on when something goes wrong, and algorithms for a particular type of
term mist be devised and the best one chosen.

To date the basic hydrodynamic code incorporates algorithms which allow us
to include the effects of surface tension and viscosity. These algorithms have
been incorporated and tested extensively as described below. We have also
devised algorithms for including the effects of compressibility for subsonic
flow and for incorporating the effects of thermal conductivity. While these
latter effects are being tested and incorporated, we will be developing the
algorithms for vaporization and molecular diffusion. The final steps will allow
us to describe a burning droplet.

The test problems performed have included similations of incompressible
flows about droplets in which the density ratios of droplet to background mate-
rial have been 2:1, 10:1, and most recently 800:1. The two lower density ratios
were used to test the various algorithms. The latest tests are aimed at model-
ling kerosene in air and have incoporated the expressions for surface tension
and viscosity.

As an example of the way in which development of algorithms has proceeded,
we describe the latest development in an algorithm for viscosity. Our viscosity
algorithm originally expressed the change in the vorticity, &, at a grid point
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due to viscosity by d&/dt = vVZE, where v is the viscosity coefficient. All
triangle velocities about a vertex contributed equally to the change in vorti-
city at the central grid point. Although the algorithm produced the correct
spreading rates for the test case of a shear profile, we found that it only did
so for fairly regular grid geometries because of the ambiguity in determining
how the changes in vorticity are translated to velocity changes for different
grid geometries. For an arbitrary grid, a more complete prescription was neces-
sary and a method was developed in which V2V is a triangle-centered

quantity.

This new triangle—centered algorithm was tested in a calculation of the
spreading of a shear layer of initially zero thickness. The way in which the
velocity distribution across this layer evolves and the growth of the width of
the layer are known quantities which may be compared to the results of calecula-
tions. We found that the calculated layer width agreed exactly with the theory
and the shear layer velocities were correct over the entire mesh. The compo-
nents of velocity perpendicular to the shear layer remained zero indicating that
the algorithm worked well even for the distorted grid used in the test prob-
lems.

In order to test our algorithm for surface tension, we performed calcula-
tions of droplets which oscillate under the effects of surface tension. The
results of simlations could be compared to the linear theory for smll ampli-
tude oscillations on cylindrical jets, as first given by Rayleigh. We extended
this theory to predict droplet oscillation frequencies for a droplet in a back-
ground gas of finite density.

In the numerical calculations we studied an n = 2 oscillation for a droplet
density of 2 g/cm?® and an external fluid density of 1 g/cm3. From the calcula-
tions shown in Figure 1, we find that the numerical oscillation period is
approximately 1.25x10-3s whereas the theoretical period is 1.13x10"3s. Most of
the small discrepancy between the numerical and theoretical results can be
explained by the finite grid sm-=cing. However, given Rayleigh's experience with
large amplitude oscillations, 1t is reasonable to expect our computational
period to differ somewhat from that given by the linear theory.

Figures 2 and 3 show other early test calculations. Figure 2 illustrates
the case for which the density ratio is 2:1 and there is no surface tension or
viscosity present. We see that a recirculation zone forms early in the calcula-
tion, compressing the droplet in the direction parallel to the flow. Flow
within the droplet is initiated by this compression in a direction normal to the
external flow. The bulges formed at the top and bottom of the distorted droplet
are pulled around the recirculation zone by the shear flow which is at a maximm
at these points. The internal droplet flow is therefore driven by the compres-
sion set up between the front and rear stagnation points and by the high shear
flow which extends around the top and bottom of the droplet and recirculation
zone., The interaction of the droplet back onto the external flow occurs pri-
marily through the enlarged cross-sectional area of the droplet which increases
the size of the recirculation zone. Eventually the droplet is squeezed into a
thin layer coating the recirculating zone. The thinned film then shatters into
several smller pieces, first at the rear of the droplet and later in the more
laminar flow toward the front on the droplet.



Figure 3 shows the results of a calculation with surface tension for the
same initial conditions as used in the calculation without surface tension
(Figure 2). As in the case without surface tension, the internal droplet flow
is driven by compression parallel to the external flow and is initially normsl
to the external flow. A recirculation zone is formed in the wake of the
compressed droplet and the droplet is deformed as it is swept outward and back-
ward by the external flow both outside and inside the recirculation zone.
However, the presence of surface tension provides counteracting forces at
regions of high curvature. Such forces at the sides and rear of the droplet are
sufficient to stop the droplet from thinning around the recirculation zone.

The presentation will summarize the calculations shown above and then
proceed to describe the more recent calculations at an 800:1 density ratio.
Introducing this large ratio initially caused several problems in defining
velocities when cells near the droplet boundary were divided. This problem was
due to finite resolution effects at the boundary and has been fixed. Current
similations with viscosity should give us a realistic picture of flows in the
droplet itself.

Finally, we describe the new algorithms to be tested for subsonic compres-
sibility and thermal conductivity. A new parametric representation of taut
splines will also be presented. This extension was necessary to achieve a
"wiggle-free" spline fit in smooth regions of a droplet interface which were
near surface discontinuties. '
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