855 research outputs found

    SWIRP (Submm-Wave and Long Wave InfraRed Polarimeter); Development and Characterization of a Sub-Mm Polarimeter for Ice Cloud Investigations

    Get PDF
    A major source of uncertainty in climate models is the presence, shape and distribution of ice particles in the uppermost layers of the clouds. The effects of this component are poorly constrained, turning ice particles into an almost-free variable in many climate models.NASA-GSFC is developing a new instrument aimed at measuring the size and shape of ice particles. The instrument consists of two sub-mm polarimeters (at 220 and 670 GHz) coupled with a long-wave infrared polarimeter at 10 micron. Each polarimeter has identical V-pol and H-pol channels; the axes of polarization are defined geometrically by the orientation of the waveguide elements, and the purity has been measured in the lab. The instrument is configured as a conical scanner, suitable for deployment as a payload on a small satellite or on a high-altitude sub-orbital platform. From a 400 km orbit, the instrument has a 3dB spatial resolution of 20 (10) km at 220 (670) GHz and a swath of 600 km over 180 degrees of view.The BAPTA (Bearing And Power Transfer Assembly) carries heritage from the SSMIS design, now in its 22nd year of on-orbit operation, but with a much reduced SWaP (Size Weight and Power) footprint, suitable for a small satellite.The main components of the instrument have been fabricated and are undergoing final testing prior to their integration as a single unit. The sub-mm channels have dedicated secondary reflectors which illuminate a shared primary reflector. The receiving units are placed behind the focal point of the optical arrangement, so that all beams equally illuminate the primary reflector and are almost co-located on the ground (within a single 220 GHz footprint). Primary and secondary beam patterns have been measured and verified to match the as-designed expectations. A Zytex (TM) window is deployed to protect the secondary reflectors and the feed horns from debris and other contaminants, and to reduce the heat load from the active (hot) IR calibration unit. The insertion loss of Zytex has been measured and is accounted in the calibration equation of the sub-mm channels.The radiometric performance of the sub-mm receivers has been characterized in the lab and under operational conditions of temperature and pressure.This paper discusses the design constraints on the sub-mm components, details of the scientific goals and their flowdown, and describes the characterization of the polarimeters. Options to optimize the layout and distribution of the masses within the assembly, with the goal of making the instrument even more compact and fully-compatible with cubesat-class satellites will be presented

    Excerpts from the paper: Research Status and Recommendation from the Alaska Workshop on Gravity Waves and Turbulence in the Middle Atmosphere, part 1.3A

    Get PDF
    Internal gravity waves are disturbances whose intrinsic frequencies k(c - u) are smaller than the Brunt-Vaisala frequency (N). Their importance arises because: they are the major components of the total flow and temperature variability fields of the mesosphere (i.e., shears and lapse rates) and hence constitute the likely sources of turbulence; and they are associated with fluxes of momentum that communicate stresses over large distances. For example, gravity waves exert a drag on the flow in the upper mesosphere. However, in order for gravity waves to exert a net drag on the atmosphere, they must be attenuated. There are two general types of processes that seek to attenuate gravity waves: dissipation and saturation. Dissipation is any process that is effective independent of the wave amplitude, while saturation occurs when certain wave amplitude conditions are met. Radiative damping is an example of dissipation, while convective overturning is an example of saturation. The two processes are not mutually exclusive

    Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations

    Get PDF
    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields

    Application of Acclerometer Data to Atmospheric Modeling During Mars Aerobraking Operations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77186/1/AIAA-28472-302.pd

    Oscillator Strengths for B-X, C-X, and E-X Transitions in Carbon Monoxide

    Get PDF
    Band oscillator strengths for electronic transitions in CO were obtained at the Synchrotron Radiation Center of the University of Wisconsin-Madison. Our focus was on transitions that are observed in interstellar spectra with the Far Ultraviolet Spectroscopic Explorer; these transitions are also important in studies of selective isotope photodissociation where fractionation among isotopomers can occur. Absorption from the ground state (X ^1Sigma^+ v'' = 0) to A ^1Pi (v'= 5), B ^1Sigma^+ (v' = 0, 1), C ^1Sigma^+ (v' = 0, 1), and E ^1Pi (v' = 0) was measured. Fits to the A - X (5, 0) band, whose oscillator strength is well known, yielded the necessary column density and excitation temperature. These parameters were used in a least-squares fit of the observed profiles for the transitions of interest to extract their band oscillator strengths. Our oscillator strengths are in excellent agreement with results from recent experiments using a variety of techniques. This agreement provides the basis for a self-consistent set of f-values at far ultraviolet wavelengths for studies of interstellar (and stellar) CO.Comment: 22 pages, 3 figures, ApJS (in press

    Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    Get PDF
    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot"

    Lifetimes and Oscillator Strengths for Ultraviolet Transitions in P II, Cl II and Cl III

    Get PDF
    Oscillator strengths for transitions in P II, Cl II and Cl III are derived from lifetimes and branching factions measured with beam-foil techniques. The focus is on the multiplets with a prominent interstellar line at 1153 A in P II which is seen in spectra of hot stars, and the lines at 1071 A in Cl II and 1011 A in Cl III whose lines are seen in spectra of diffuse interstellar clouds and the Io torus acquired with the Far Ultraviolet Spectroscopic Explorer. These data represent the first complete set of experimental f-values for the lines in the multiplets. Our results for P II (lambda)1153 agree well with Curtis semi-empirical predictions, as well as the large scale computations by Hibbert and by Tayal. The data for Cl II (lambda)1071 also agree very well with the most recent theoretical effort and with Morton s newest recommendations. For Cl III, however, our f-values are significantly larger than those given by Morton; instead, they are more consistent with recent large-scale theoretical calculations. Extensive tests provide confirmation that LS coupling rules apply to the transitions for the multiplets in Cl II and Cl III

    Energy spectra of the ocean's internal wave field: theory and observations

    Full text link
    The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean and the observed deviations from it are shown to form a pattern consistent with the predictions of wave turbulence theory. In particular, the high frequency limit of the Garrett and Munk spectrum constitutes an {\it exact} steady state solution of the corresponding kinetic equation.Comment: 4 pages, one color figur

    Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar

    Get PDF
    A radar meteor echo is the radar scattering signature from the free electrons generated by the entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF all-sky meteor radars primarily detect the specular trails, while high-power, large-aperture (HPLA) radars efficiently detect meteor head echoes and, in some cases, nonspecular trails. The fact that head echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. Such systems would also permit simultaneous detection of all different scattering mechanisms using the same instrument, rather than requiring assorted different classes of radars, which can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER). The results presented here are derived from observations performed over a period of 12 days in August 2011 and include meteoroid dynamical parameter distributions, radiants, and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.Facultad de Ciencias Astronómicas y Geofísica

    Simultaneous observations of equatorial F-region plasma depletions over Brazil during the Spread-F Experiment (SpreadFEx)

    Get PDF
    From September to November 2005, the NASA Living with a Star program supported the Spread-F Experiment campaign (SpreadFEx) in Brazil to study the effects of convectively generated gravity waves on the ionosphere and their role in seeding Rayleigh-Taylor instabilities, and associated equatorial plasma bubbles. Several US and Brazilian institutes deployed a broad range of instruments (all-sky imagers, digisondes, photometers, meteor/VHF radars, GPS receivers) covering a large area of Brazil. The campaign was divided in two observational phases centered on the September and October new moon periods. During these periods, an Utah State University (USU) all-sky CCD imager operated at São João d'Aliança (14.8° S, 47.6° W), near Brasilia, and a Brazilian all-sky CCD imager located at Cariri (7.4° S, 36° W), observed simultaneously the evolution of the ionospheric bubbles in the OI (630 nm) emission and the mesospheric gravity wave field. The two sites had approximately the same magnetic latitude (9–10° S) but were separated in longitude by ~1500 km. <br><br> Plasma bubbles were observed on every clear night (17 from Brasilia and 19 from Cariri, with 8 coincident nights). These joint datasets provided important information for characterizing the ionospheric depletions during the campaign and to perform a novel longitudinal investigation of their variability. Measurements of the drift velocities at both sites are in good agreement with previous studies, however, the overlapping fields of view revealed significant differences in the occurrence and structure of the plasma bubbles, providing new evidence for localized generation. This paper summarizes the observed bubble characteristics important for related investigations of their seeding mechanisms associated with gravity wave activity
    • …
    corecore