976 research outputs found

    Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth model

    Get PDF
    Thirty‒one GPS geodetic measurements of crustal uplift in southernmost South America determined extraordinarily high trend rates (> 35 mm/yr) in the north‒central part of the Southern Patagonian Icefield. These trends have a coherent pattern, motivating a refined viscoelastic glacial isostatic adjustment model to explain the observations. Two end‒member models provide good fits: both require a lithospheric thickness of 36.5 ± 5.3 km. However, one end‒member has a mantle viscosity near η =1.6 ×1018 Pa s and an ice collapse rate from the Little Ice Age (LIA) maximum comparable to a lowest recent estimate of 1995–2012 ice loss at about −11 Gt/yr. In contrast, the other end‒member has much larger viscosity: η = 8.0 ×1018 Pa s, half the post–LIA collapse rate, and a steadily rising loss rate in the twentieth century after AD 1943, reaching −25.9 Gt/yr during 1995–2012.Fil: Lange, H.. Technische Universitaet Dresden; AlemaniaFil: Casassa, G.. Centro de Estudios Cientificos; Chile. Universidad de Magallanes; ChileFil: Ivins, E. R.. Institute of Technology. Jet propulsion Laboratory; Estados UnidosFil: Schroeder, L.. Technische Universitaet Dresden; AlemaniaFil: Fritsche, M.. Technische Universitaet Dresden; AlemaniaFil: Richter, Andreas Jorg. Technische Universitaet Dresden; Alemania. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Astrometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Groh, A.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani

    A classical explanation of quantization

    Full text link
    In the context of our recently developed emergent quantum mechanics, and, in particular, based on an assumed sub-quantum thermodynamics, the necessity of energy quantization as originally postulated by Max Planck is explained by means of purely classical physics. Moreover, under the same premises, also the energy spectrum of the quantum mechanical harmonic oscillator is derived. Essentially, Planck's constant h is shown to be indicative of a particle's "zitterbewegung" and thus of a fundamental angular momentum. The latter is identified with quantum mechanical spin, a residue of which is thus present even in the non-relativistic Schroedinger theory.Comment: 20 pages; version accepted for publication in Foundations of Physic

    Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth model

    Get PDF
    Thirty‒one GPS geodetic measurements of crustal uplift in southernmost South America determined extraordinarily high trend rates (> 35 mm/yr) in the north‒central part of the Southern Patagonian Icefield. These trends have a coherent pattern, motivating a refined viscoelastic glacial isostatic adjustment model to explain the observations. Two end‒member models provide good fits: both require a lithospheric thickness of 36.5 ± 5.3 km. However, one end‒member has a mantle viscosity near η =1.6 ×1018 Pa s and an ice collapse rate from the Little Ice Age (LIA) maximum comparable to a lowest recent estimate of 1995–2012 ice loss at about −11 Gt/yr. In contrast, the other end‒member has much larger viscosity: η = 8.0 ×1018 Pa s, half the post–LIA collapse rate, and a steadily rising loss rate in the twentieth century after AD 1943, reaching −25.9 Gt/yr during 1995–2012.Facultad de Ciencias Astronómicas y Geofísica

    Entropic Dynamics, Time and Quantum Theory

    Full text link
    Quantum mechanics is derived as an application of the method of maximum entropy. No appeal is made to any underlying classical action principle whether deterministic or stochastic. Instead, the basic assumption is that in addition to the particles of interest x there exist extra variables y whose entropy S(x) depends on x. The Schr\"odinger equation follows from their coupled dynamics: the entropy S(x) drives the dynamics of the particles x while they in their turn determine the evolution of S(x). In this "entropic dynamics" time is introduced as a device to keep track of change. A welcome feature of such an entropic time is that it naturally incorporates an arrow of time. Both the magnitude and the phase of the wave function are given statistical interpretations: the magnitude gives the distribution of x in agreement with the usual Born rule and the phase carries information about the entropy S(x) of the extra variables. Extending the model to include external electromagnetic fields yields further insight into the nature of the quantum phase.Comment: 29 page

    Development and validation of the ACE tool: Assessing medical trainees' competency in evidence based medicine

    Get PDF
    BACKGROUND: While a variety of instruments have been developed to assess knowledge and skills in evidence based medicine (EBM), few assess all aspects of EBM - including knowledge, skills attitudes and behaviour - or have been psychometrically evaluated. The aim of this study was to develop and validate an instrument that evaluates medical trainees’ competency in EBM across knowledge, skills and attitude. METHODS: The ‘Assessing Competency in EBM’ (ACE) tool was developed by the authors, with content and face validity assessed by expert opinion. A cross-sectional sample of 342 medical trainees representing ‘novice’, ‘intermediate’ and ‘advanced’ EBM trainees were recruited to complete the ACE tool. Construct validity, item difficulty, internal reliability and item discrimination were analysed. RESULTS: We recruited 98 EBM-novice, 108 EBM-intermediate and 136 EBM-advanced participants. A statistically significant difference in the total ACE score was observed and corresponded to the level of training: on a 0-15-point test, the mean ACE scores were 8.6 for EBM-novice; 9.5 for EBM-intermediate; and 10.4 for EBM-advanced (p < 0.0001). Individual item discrimination was excellent (Item Discrimination Index ranging from 0.37 to 0.84), with internal reliability consistent across all but three items (Item Total Correlations were all positive ranging from 0.14 to 0.20). CONCLUSION: The 15-item ACE tool is a reliable and valid instrument to assess medical trainees’ competency in EBM. The ACE tool provides a novel assessment that measures user performance across the four main steps of EBM. To provide a complete suite of instruments to assess EBM competency across various patient scenarios, future refinement of the ACE instrument should include further scenarios across harm, diagnosis and prognosis

    Magneto-Coulomb Oscillation in Ferromagnetic Single Electron Transistors

    Full text link
    The mechanism of the magneto-Coulomb oscillation in ferromagnetic single electron transistors (SET's) is theoretically considered. Variations in the chemical potentials of the conduction electrons in the ferromagnetic island electrode and the ferromagnetic lead electrodes in magnetic fields cause changes in the free energy of the island electrode of the SET. Experimental results of the magneto-Coulomb oscillation in a Ni/Co/Ni ferromagnetic SET are presented and discussed. Possible applications of this phenomenon are also discussed.Comment: 24 pages Latex, 5 figures in GIF files, style files included. Revised version: some errors are corrected and further discussions are added. To be published in J. Phys. Soc. Jpn. Vol.67 (1998) No.
    corecore