736 research outputs found

    Seedling Emergence and Survival of Sixteen Grasses in Central Utah

    Get PDF
    The successful artificial seeding of deteriorated range lands offers much promise for improving the economic security of western range states. It has been demonstrated that artifiial seeding is the most rapid means of increasing the quantity and improving the quality of forage for livestock as well as for stabilizing the soils agianst erosion; hence, it contributes directly to the stability of the agricultural industry and to the general welfare of the states involved. Agricultural pursuits have always been, and appear destined to be, the fundamental basis for a permanent society in the West. The present study was undertaken to learn more fully the influence of some environmental factors upon the survival of grass seedlings, and the scharacteristics of these seedlings in resisting the vicissitudes of weather. Such knowledge is necessary in order to help protect plants against adverse conditions by planting at such a time and in such a way as to enable the young plants to escape some of the extremes

    Keep it simple: Easy ways to estimate choice models for single consumers

    Full text link
    We show with Monte-Carlo simulations and empirical choice data sets that we can quickly and simply refine choice model estimates for individuals based on methods such as ordinary least squares regression and weighted least squares regression to produce well-behaved insample and out-of-sample predictions of choices. We use well-known regression methods to estimate choice models, which should allow many more researchers to estimate choice models and be confident that they are unlikely to make serious mistakes

    Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Get PDF
    © 2016 ESO. Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] 1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims. The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ∼ 45 000) and high-signal-tonoise (S=N > 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods. High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results.We confirm that the analysed stars are moderately metal-poor (-1:04≤[Fe/H]≤-0:43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤+0:2, and α-enhanced.We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na-O, Al-O, Al-Mg anti-correlations) were detected in our sample. The heavy elements Y, Zr, Ba, La, and Eu also exhibit oversolar abundances. Three out of the five stars analysed here show slightly enhanced [Y/Ba] ratios similar to those found in other metal-poor bulge globular clusters (NGC 6522 and M 62). Conclusions. This sample shows enhancement in the first-to-second peak abundance ratios of heavy elements, as well as dominantly s-process element excesses. This can be explained by different nucleosynthesis scenarios: (a) the main r-process plus extra mechanisms, such as the weak r-process; (b) mass transfer from asymptotic giant branch stars in binary systems; (c) an early generation of fast-rotating massive stars. Larger samples of moderately metal-poor bulge stars, with detailed chemical abundances, are needed to better constrain the source of dominantly s-process elements in the early Universe

    Boron depletion in 9 to 15 M(circle dot) stars with rotation

    Get PDF
    The treatment of mixing is still one of the major uncertainties in stellar evolution models. One open question is how well the prescriptions for rotational mixing describe the real effects. We tested the mixing prescriptions included in the Geneva stellar evolution code (GENEC) by following the evolution of surface abundances of light isotopes in massive stars, such as boron and nitrogen. We followed 9, 12 and 15 M(O) models with rotation from the zero age main sequence up to the end of He burning. The calculations show the expected behaviour with faster depletion of boton for faster rotating stars and more massive stars. The mixing at the surface is more efficient, than predicted by prescriptions used in other codes and reproduces the majority of observations very well However two observed stars with strong boron depletion but, no nitrogen enhancement still can not be explained and let the question open whether additional mixing processes are acting in these massive star

    Lamellae Stability in Confined Systems with Gravity

    Full text link
    The microphase separation of a diblock copolymer melt confined by hard walls and in the presence of a gravitational field is simulated by means of a cell dynamical system model. It is found that the presence of hard walls normal to the gravitational field are key ingredients to the formation of well ordered lamellae in BCP melts. To this effect the currents in the directions normal and parallel to the field are calculated along the interface of a lamellar domain, showing that the formation of lamellae parallel to the hard boundaries and normal to the field correspond to the stable configuration. Also, it is found thet the field increases the interface width.Comment: 4 pages, 2 figures, submitted to Physical Review

    IEA EBC Annex 72 - Assessing life cycle related environmental impacts caused by buildings - Targets and tasks

    Get PDF
    Investment decisions for buildings made today largely determine their environmental impacts over many future decades due to their long lifetimes. Such decisions involve a trade-off between additional investments today and potential savings during use and at end of life - in terms of economic costs, primary energy consumption, greenhouse gas emissions and other environmental impacts. Life cycle assessment (LCA) is suited to identify measures and action to increase the resource efficiency and the environmental performance of buildings and construction. This paper gives an overview of an ongoing international research project within the IEA EBC with the overall aim to harmonise LCA approaches on buildings and foster life cycle thinking in the real estate and construction sectors. The objectives of the project are i) to establish a common methodology guideline to assess the life cycle based environmental impacts caused by buildings, ii) to establish methods for the development of specific environmental benchmarks for different types of buildings, iii) to derive regionally differentiated guidelines and tools for the use of LCA in building design and tools such as BIM, and iv) to improve data availability by developing national or regional databases with regionally differentiated LCA data tailored to the construction sector. To ensure practical solutions a number of case studies will be used to test and illustrate the consensus approaches and research issues

    Boron depletion in 9 to 15 M stars with rotation

    Get PDF
    The treatment of mixing is still one of the major uncertainties in stellar evolution models. One open question is how well the prescriptions for rotational mixing describe the real effects. We tested the mixing prescriptions included in the Geneva stellar evolution code (GENEC) by following the evolution of surface abundances of light isotopes in massive stars, such as boron and nitrogen. We followed 9, 12 and 15 M models with rotation from the zero age main sequence up to the end of He burning. The calculations show the expected behaviour with faster depletion of boron for faster rotating stars and more massive stars. The mixing at the surface is more efficient than predicted by prescriptions used in other codes and reproduces the majority of observations very well. However two observed stars with strong boron depletion but no nitrogen enrichment still can not be explained and let the question open whether additional mixing processes are acting in these massive star
    • …
    corecore