7,305 research outputs found

    The Cauchy-Lagrangian method for numerical analysis of Euler flow

    Full text link
    A novel semi-Lagrangian method is introduced to solve numerically the Euler equation for ideal incompressible flow in arbitrary space dimension. It exploits the time-analyticity of fluid particle trajectories and requires, in principle, only limited spatial smoothness of the initial data. Efficient generation of high-order time-Taylor coefficients is made possible by a recurrence relation that follows from the Cauchy invariants formulation of the Euler equation (Zheligovsky & Frisch, J. Fluid Mech. 2014, 749, 404-430). Truncated time-Taylor series of very high order allow the use of time steps vastly exceeding the Courant-Friedrichs-Lewy limit, without compromising the accuracy of the solution. Tests performed on the two-dimensional Euler equation indicate that the Cauchy-Lagrangian method is more - and occasionally much more - efficient and less prone to instability than Eulerian Runge-Kutta methods, and less prone to rapid growth of rounding errors than the high-order Eulerian time-Taylor algorithm. We also develop tools of analysis adapted to the Cauchy-Lagrangian method, such as the monitoring of the radius of convergence of the time-Taylor series. Certain other fluid equations can be handled similarly.Comment: 30 pp., 13 figures, 45 references. Minor revision. In press in Journal of Scientific Computin

    Melt viscosities of lattice polymers using a Kramers potential treatment

    Full text link
    Kramers relaxation times Ď„K\tau_{K} and relaxation times Ď„R\tau_{R} and Ď„G\tau_{G} for the end-to-end distances and for center of mass diffusion are calculated for dense systems of athermal lattice chains. Ď„K\tau_{K} is defined from the response of the radius of gyration to a Kramers potential which approximately describes the effect of a stationary shear flow. It is shown that within an intermediate range of chain lengths N the relaxation times Ď„R\tau_{R} and Ď„K\tau_{K} exhibit the same scaling with N, suggesting that N-dependent melt-viscosities for non-entangled chains can be obtained from the Kramers equilibrium concept.Comment: submitted to: Journal of Chemical Physic

    Lattice Boltzmann Magnetohydrodynamics

    Full text link
    Lattice gas and lattice Boltzmann methods are recently developed numerical schemes for simulating a variety of physical systems. In this paper a new lattice Boltzmann model for modeling two-dimensional incompressible magnetohydrodynamics (MHD) is presented. The current model fully utilizes the flexibility of the lattice Boltzmann method in comparison with previous lattice gas and lattice Boltzmann MHD models, reducing the number of moving directions from 3636 in other models to 1212 only. To increase computational efficiency, a simple single time relaxation rule is used for collisions, which directly controls the transport coefficients. The bi-directional streaming process of the particle distribution function in this paper is similar to the original model [ H. Chen and W. H. Matthaeus, Phys. Rev. Lett., {\bf 58}, 1845(1987), S.Chen, H.Chen, D.Mart\'{\i}nez and W.H.Matthaeus, Phys. Rev. Lett. {\bf 67},3776 (1991)], but has been greatly simplified, affording simpler implementation of boundary conditions and increasing the feasibility of extension into a workable three-dimensional model. Analytical expressions for the transport coefficients are presented. Also, as example cases, numerical calculation for the Hartmann flow is performed, showing a good agreement between the theoreticalComment: 45 pages, to appear in Physics of Plasma

    An exact relation between Eulerian and Lagrangian velocity increment statistics

    Full text link
    We present a formal connection between Lagrangian and Eulerian velocity increment distributions which is applicable to a wide range of turbulent systems ranging from turbulence in incompressible fluids to magnetohydrodynamic turbulence. For the case of the inverse cascade regime of two-dimensional turbulence we numerically estimate the transition probabilities involved in this connection. In this context we are able to directly identify the processes leading to strongly non-Gaussian statistics for the Lagrangian velocity increments.Comment: 5 pages, 3 figure

    Lagrangian statistics in forced two-dimensional turbulence

    Full text link
    We report on simulations of two-dimensional turbulence in the inverse energy cascade regime. Focusing on the statistics of Lagrangian tracer particles, scaling behavior of the probability density functions of velocity fluctuations is investigated. The results are compared to the three-dimensional case. In particular an analysis in terms of compensated cumulants reveals the transition from a strong non-Gaussian behavior with large tails to Gaussianity. The reported computation of correlation functions for the acceleration components sheds light on the underlying dynamics of the tracer particles.Comment: 8 figures, 1 tabl

    Observation of Lasing Mediated by Collective Atomic Recoil

    Full text link
    We observe the buildup of a frequency-shifted reverse light field in a unidirectionally pumped high-QQ optical ring cavity serving as a dipole trap for cold atoms. This effect is enhanced and a steady state is reached, if via an optical molasses an additional friction force is applied to the atoms. We observe the displacement of the atoms accelerated by momentum transfer in the backscattering process and interpret our observations in terms of the collective atomic recoil laser. Numerical simulations are in good agreement with the experimental results.Comment: 4 pages, 3 figure

    Photoassociation of a cold atom-molecule pair: long-range quadrupole-quadrupole interactions

    Get PDF
    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation the potential energy between an excited atom (without fine structure) and a ground state diatomic molecule at large separations. Both partners exhibit a permanent quadrupole moment, so that their mutual quadrupole-quadrupole long-range interaction is attractive enough to bind trimers. Numerical results are given for an excited Cs(6P) atom and a ground state Cs2 molecule. The prospects for achieving photoassociation of a cold atom/dimer pair is thus discussed and found promising. The formalism can be easily generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.Comment: 5 figure

    Rough-conduit flows and the existence of fully developed turbulence

    Full text link
    It is widely believed that at high Reynolds number (Re) all turbulent flows approach a state of "fully developed turbulence" defined by a unique, Re-independent statistics of the velocity fluctuations. Yet direct measurements of the velocity fluctuations have failed to yield clear-cut empirical evidence of the existence of fully developed turbulence. Here we relate the friction coefficient (ff) of rough-conduit flows to the statistics of the velocity fluctuations. In light of experimental measurements of ff, our results yield unequivocal evidence of the existence of fully developed turbulence.Comment: 5 pages, 2 figure

    The Monge-Ampere equation: various forms and numerical methods

    Full text link
    We present three novel forms of the Monge-Ampere equation, which is used, e.g., in image processing and in reconstruction of mass transportation in the primordial Universe. The central role in this paper is played by our Fourier integral form, for which we establish positivity and sharp bound properties of the kernels. This is the basis for the development of a new method for solving numerically the space-periodic Monge-Ampere problem in an odd-dimensional space. Convergence is illustrated for a test problem of cosmological type, in which a Gaussian distribution of matter is assumed in each localised object, and the right-hand side of the Monge-Ampere equation is a sum of such distributions.Comment: 24 pages, 2 tables, 5 figures, 32 references. Submitted to J. Computational Physics. Times of runs added, multiple improvements of the manuscript implemented
    • …
    corecore