1,392 research outputs found

    Space group symmetry applied to SCF calculations with periodic boundary conditions and Gaussian orbitals

    Get PDF
    Space group symmetry is exploited and implemented in density functional calculations of extended systems with periodic boundary conditions. Our scheme for reducing the number of two-electron integrals employs the entire set of operations of the space group, including glide plains and screw axes. Speedups observed for the Fock matrix formation in simple 3D systems range from 2X to 9X for the near field Coulomb part and from 3X to 8X for the Hartree–Fock-type exchange, the slowest steps of the procedure, thus leading to a substantial reduction of the computational time. The relatively small speedup factors in special cases are attributed to the highly symmetric positions atoms occupy in crystals, including the ones tested here, as well as to the choice of the smallest possible unit cells. For quasi-1D systems with most atoms staying invariant only under identity, the speedup factors often exceed one order of magnitude reaching almost 70X (near-field Coulomb) and 57X (HFx) for the largest tested (16,7) single-walled nanotube with 278 symmetry operations

    Fundamental Conditions for N-th Order Accurate Lattice Boltzmann Models

    Full text link
    In this paper, we theoretically prove a set of fundamental conditions pertaining discrete velocity sets and corresponding weights. These conditions provide sufficient conditions for a priori formulation of lattice Boltzmann models that automatically admit correct hydrodynamic moments up to any given N-th order

    A 96-Channel FPGA-based Time-to-Digital Converter

    Full text link
    We describe an FPGA-based, 96-channel, time-to-digital converter (TDC) intended for use with the Central Outer Tracker (COT) in the CDF Experiment at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGA's. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 μ\mus allow deadtime-less operation in the first-level trigger. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/sec. The TDC also contains a separately-programmed data path that produces prompt trigger data every Tevatron crossing. The full TDC design and multi-card test results are described. The physical simplicity ensures low-maintenance; the functionality being in firmware allows reprogramming for other applications.Comment: 32 pages, 13 figure

    Finite-Correlation-Time Effects in the Kinematic Dynamo Problem

    Full text link
    Most of the theoretical results on the kinematic amplification of small-scale magnetic fluctuations by turbulence have been confined to the model of white-noise-like advecting turbulent velocity field. In this work, the statistics of the passive magnetic field in the diffusion-free regime are considered for the case when the advecting flow is finite-time correlated. A new method is developed that allows one to systematically construct the correlation-time expansion for statistical characteristics of the field. The expansion is valid provided the velocity correlation time is smaller than the characteristic growth time of the magnetic fluctuations. This expansion is carried out up to first order in the general case of a d-dimensional arbitrarily compressible advecting flow. The growth rates for all moments of the magnetic field are derived. The effect of the first-order corrections is to reduce these growth rates. It is shown that introducing a finite correlation time leads to the loss of the small-scale statistical universality, which was present in the limit of the delta-correlated velocity field. Namely, the shape of the velocity time-correlation profile and the large-scale spatial structure of the flow become important. The latter is a new effect, that implies, in particular, that the approximation of a locally-linear shear flow does not fully capture the effect of nonvanishing correlation time. Physical applications of this theory include the small-scale kinematic dynamo in the interstellar medium and protogalactic plasmas.Comment: revised; revtex, 23 pages, 1 figure; this is the final version of this paper as published in Physics of Plasma

    Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of maize for human and animal nutrition, but also as a source for bio-energy is rapidly increasing. Maize yield is a quantitative trait controlled by many genes with small effects, spread throughout the genome. The precise location of the genes and the identity of the gene networks underlying maize grain yield is unknown. The objective of our study was to contribute to the knowledge of these genes and gene networks by transcription profiling with microarrays.</p> <p>Results</p> <p>We assessed the grain yield and grain dry matter content (an indicator for early maturity) of 98 maize hybrids in multi-environment field trials. The gene expression in seedlings of the parental inbred lines, which have four different genetic backgrounds, was assessed with genome-scale oligonucleotide arrays. We identified genes associated with grain yield and grain dry matter content using a newly developed two-step correlation approach and found overlapping gene networks for both traits. The underlying metabolic pathways and biological processes were elucidated. Genes involved in sucrose degradation and glycolysis, as well as genes involved in cell expansion and endocycle were found to be associated with grain yield.</p> <p>Conclusions</p> <p>Our results indicate that the capability of providing energy and substrates, as well as expanding the cell at the seedling stage, highly influences the grain yield of hybrids. Knowledge of these genes underlying grain yield in maize can contribute to the development of new high yielding varieties.</p

    Case Study for Energy Efficiency Measures of Buildings on an Urban Scale

    Get PDF
    The energy efficiency of existing buildings is one of the challenges launched by the EPBD recast. The RWTH Aachen University accepted this challenge and started the project EnEff: Campus - Roadmap aiming at reducing the specific primary energy consumption of the university campus building stock (about 300 buildings) by 50 % until 2025. For the estimation of refurbishments for this kind of big data, data mining techniques can be used like the CART method (Classification and Regression Tree). In this investigation, the method applied on the RWTH Aachen buildings stock and the estimated results will be compared to results from a simple data mining technique, called visual method. The comparison is performed by using low-order dynamic building model (LOM) performance simulation through the Modelica AixLib. The determined results of the recommendation of the CART method will be discussed and evaluated in this paper

    Lattice Boltzmann Thermohydrodynamics

    Full text link
    We introduce a lattice Boltzmann computational scheme capable of modeling thermohydrodynamic flows of monatomic gases. The parallel nature of this approach provides a numerically efficient alternative to traditional methods of computational fluid dynamics. The scheme uses a small number of discrete velocity states and a linear, single-time-relaxation collision operator. Numerical simulations in two dimensions agree well with exact solutions for adiabatic sound propagation and Couette flow with heat transfer.Comment: 11 pages, Physical Review E: Rapid Communications, in pres

    Steps toward the power spectrum of matter. III. The primordial spectrum

    Full text link
    Observed power spectrum of matter found in Papers I and II is compared with analytical power spectra. Spatially flat cold and mixed dark matter models with cosmological constant and open models are considered. The primordial power spectrum of matter is determined using the power spectrum of matter and the transfer functions of analytical models. The primordial power spectrum has a break in amplitude. We conclude that a scale-free primordial power spectrum is excluded if presently available data on the distribution of clusters and galaxies represent the true mass distribution of the Universe.Comment: LaTex (sty files added), 22 pages, 5 PostScript figures embedded, Astrophysical Journal (accepted
    corecore