41 research outputs found

    Developmental language disorder: Early predictors, age for the diagnosis, and diagnostic tools. A scoping review

    Get PDF
    Background. Developmental Language Disorder (DLD) is frequent in childhood and may have long-term sequelae. By employing an evidence-based approach, this scoping review aims at identifying (a) early predictors of DLD; (b) the optimal age range for the use of screening and diagnostic tools; (c) effective diagnostic tools in preschool children. Methods. We considered systematic reviews, meta-analyses, and primary observational studies with control groups on predictive, sensitivity and specificity values of screening and diagnostic tools and psycholinguistic measures for the assessment of DLD in preschool children. We identified 37 studies, consisting of 10 systematic reviews and 27 primary studies. Results. Delay in gesture production, receptive and/or expressive vocabulary, syntactic comprehension, or word combination up to 30 months emerged as early predictors of DLD, a family history of DLD appeared to be a major risk factor, and low socioeconomic status and environmental input were reported as risk factors with lower predictive power. Optimal time for screening is suggested between age 2 and 3, for diagnosis around age 4. Because of the high variability of sensitivity and specificity values, joint use of standardized and psycholinguistic measures is suggested to increase diagnostic accuracy. Conclusions. Monitoring risk situations and employing caregivers\u2019 reports, clinical assessment and multiple linguistic measures are fundamental for an early identification of DLD and timely interventions

    Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages.

    Get PDF
    Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or down-regulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6. © 2014 Springer Science+Business Media New York.Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or downregulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6

    Biodiversity of Arbuscular Mycorrhizal Fungi in South America: A Review

    Get PDF
    Identification of species is crucial in understanding how diversity changes affect ecosystemic processes. Particularly, soil microbial are key factors of ecosystemic functioning .Among soil microbes, arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are worldwide distributed and form symbiotic associations with almost 80% of the vascular plants of the earth, except for one species, Geosiphon pyriformis, which associates with the cyanobacteria Nostoc. AMF comprise around 300 morphologically defined or 350–1000 molecularly defined taxa. Since AMF associate with aboveground community, their occurrence and composition can influence ecosystemic processes either through affecting plant community composition and thus its processes rates, or soil microbial communities, which are directly involved in nutrient cycling. Soil microorganisms are considered a potentially suitable target for studying regional and local effects on diversity. The symbiosis with AMF not only increases nutrient uptake by the plant of mainly phosphorus (P) and nitrogen (N) in exchange for plant-assimilated carbon (C), but also improves the tolerance of plants to various biotic and abiotic stresses such as pathogens, salinity, and drought
    corecore