426 research outputs found

    Water-tunnel and analytical investigation of the effect of strake design variables on strake vortex breakdown characteristics

    Get PDF
    A systematic water-tunnel study was made to determine the vortex breakdown characteristics of 43 strakes. The strakes were mounted on a 1/2-scale model of a Langley Research Center general research fighter fuselage model with a 44deg leading-edge-sweep trapezoidal wing. The analytically designed strake shapes provided examples of the effects of the primary design parameters (size, span, and slenderness) on vortex breakdown characteristics. These effects were analyzed in relation to the respective strake leading-edge suction distributions. Included were examples of the effects of detailed strake planform shaping. It was concluded that, consistent with the design criterion, those strakes with leading-edge suction distributions which increase more rapidly near, and have a higher value at, the spanwise tip of the strake produce a more stable vortex

    Experimental and analytical study of the longitudinal aerodynamic characteristics of analytically and empirically designed Strake-wing configurations at subcritical speeds

    Get PDF
    Sixteen analytically and empirically designed strakes have been tested experimentally on a wing-body at three subcritical speeds in such a way as to isolate the strake-forebody loads from the wing-afterbody loads. Analytical estimates for these longitudinal results are made using the suction analogy and the augmented vortex lift concepts. The synergistic data are reasonably well estimated or bracketed by the high- and low-angle-of-attack vortex lift theories over the Mach number range and up to maximum lift or strake-vortex breakdown over the wing. Also, the strake geometry is very important in the maximum lift value generated and the lift efficiency of a given additional area. Increasing size and slenderness ratios are important is generating lift efficiently, but similar efficiency can also be achieved by designing a strake with approximately half the area of the largest gothic strake tested. These results correlate well with strake-vortex-breakdown observations in the water tunnel

    Investigation of aerodynamic characteristics of subsonic wings

    Get PDF
    An analytical strake design procedure is investigated. A numerical solution to the governing strake design equation is used to generate a series of strakes which are tested in a water tunnel to study their vortex breakdown characteristics. The strakes are scaled for use on a half-scale model of the NASA-LaRC general research fuselage with a 44 degrees trapezoidal wing. An analytical solution to the governing design equation is obtained. The strake design procedure relates the potential-flow leading-edge suction and pressure distributions to vortex stability. Several suction distributions are studied and those which are more triangular and peak near the tip generate strakes that reach higher angles of attack before vortex breakdown occurs at the wing trailing edge. For the same suction distribution, a conical rather than three dimensional pressure specification results in a better strake shape as judged from its vortex breakdown characteristics

    Computational Study of a Generic T-tail Transport

    Get PDF
    This paper presents a computational study on the static and dynamic stability characteristics of a generic transport T-tail configuration under a NASA research program to improve stall models for civil transports. The NASA Tetrahedral Unstructured Software System (TetrUSS) was used to obtain both static and periodic dynamic solutions at low speed conditions for three Reynolds number conditions up to 60 deg angle of attack. The computational results are compared to experimental data. The dominant effects of Reynolds number for the static conditions were found to occur in the stall region. The pitch and roll damping coefficients compared well to experimental results up to up to 40 deg angle of attack whereas yaw damping coefficient agreed only up to 20 deg angle of attack

    Aerodynamics of aero-engine installation

    Get PDF
    This paper describes current progress in the development of methods to assess aero-engine airframe installation effects. The aerodynamic characteristics of isolated intakes, a typical transonic transport aircraft as well as a combination of a through-flow nacelle and aircraft configuration have been evaluated. The validation task for an isolated engine nacelle is carried out with concern for the accuracy in the assessment of intake performance descriptors such as mass flow capture ratio and drag rise Mach number. The necessary mesh and modelling requirements to simulate the nacelle aerodynamics are determined. Furthermore, the validation of the numerical model for the aircraft is performed as an extension of work that has been carried out under previous drag prediction research programmes. The validation of the aircraft model has been extended to include the geometry with through flow nacelles. Finally, the assessment of the mutual impact of the through flow nacelle and aircraft aerodynamics was performed. The drag and lift coefficient breakdown has been presented in order to identify the component sources of the drag associated with the engine installation. The paper concludes with an assessment of installation drag for through-flow nacelles and the determination of aerodynamic interference between the nacelle and the aircraft

    Contributions of TetrUSS to Project Orion

    Get PDF
    The NASA Constellation program has relied heavily on Computational Fluid Dynamics simulations for generating aerodynamic databases and design loads. The Orion Project focuses on the Orion Crew Module and the Orion Launch Abort Vehicle. NASA TetrUSS codes (GridTool/VGRID/USM3D) have been applied in a supporting role to the Crew Exploration Vehicle Aerosciences Project for investigating various aerodynamic sensitivities and supplementing the aerodynamic database. This paper provides an overview of the contributions from the TetrUSS team to the Project Orion Crew Module and Launch Abort Vehicle aerodynamics, along with selected examples to highlight the challenges encountered along the way. A brief description of geometries and tasks will be discussed followed by a description of the flow solution process that produced production level computational solutions. Four tasks conducted by the USM3D team will be discussed to show how USM3D provided aerodynamic data for inclusion in the Orion aero-database, contributed data for the build-up of aerodynamic uncertainties for the aero-database, and provided insight into the flow features about the Crew Module and the Launch Abort Vehicle

    A Strategy for Identifying the Grid Stars for the Space Interferometry Mission (SIM)

    Get PDF
    We present a strategy to identify several thousand stars that are astrometrically stable at the micro-arcsecond level for use in the SIM (Space Interferometry Mission) astrometric grid. The requirements on the grid stars make this a rather challenging task. Taking a variety of considerations into account we argue for K giants as the best type of stars for the grid, mainly because they can be located at much larger distances than any other type of star due to their intrinsic brightness. We show that it is possible to identify suitable candidate grid K giants from existing astrometric catalogs. However, double stars have to be eliminated from these candidate grid samples, since they generally produce much larger astrometric jitter than tolerable for the grid. The most efficient way to achieve this is probably by means of a radial velocity survey. To demonstrate the feasibility of this approach, we repeatedly measured the radial velocities for a pre-selected sample of 86 nearby Hipparcos K giants with precisions of 5-8 m/s. The distribution of the intrinsic radial velocity variations for the bona-fide single K giants shows a maximum around 20 m/s, which is small enough not to severely affect the identification of stellar companions around other K giants. We use the results of our observations as input parameters for Monte-Carlo simulations on the possible design of a radial velocity survey of all grid stars. Our favored scenario would result in a grid which consists to 68% of true single stars and to 32% of double or multiple stars with periods mostly larger than 200 years, but only 3.6% of all grid stars would display astrometric jitter larger than 1 microarcsecond. This contamination level is probably tolerable.Comment: LaTeX, 21 pages, 8 figures, accepted by PASP (February 2001 issue). Also available at http://beehive.ucsd.edu/ftp/pub/grid/kgiants.htm

    Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver

    Get PDF
    A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-e two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user specified region. The latter approach is applied for the solutions obtained using other one- and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration

    A companion candidate in the gap of the T Cha transitional disk

    Full text link
    T Cha is a young star surrounded by a cold disk. The presence of a gap within its disk, inferred from fitting to the spectral energy distribution, has suggested on-going planetary formation. We observed T Cha in L' and K_s with NAOS-CONICA, the adaptive optics system at the VLT, using sparse aperture masking. We detected a source in the L' data at a separation of 62+-7 mas, position angle of 78+-1 degrees, and a contrast of delta L' = 5.1+-0.2 mag. The object is not detected in the Ks band data, which show a 3-sigma contrast limit of 5.2 mag at the position of the detected L' source. For a distance of 108 pc, the detected companion candidate is located at 6.7 AU from the primary, well within the disk gap. If T Cha and the companion candidate are bound, the comparison of the L' and Ks photometry with evolutionary tracks shows that the photometry is inconsistent with any unextincted photosphere at the age and distance of T Cha. The detected object shows a very red Ks-L' color for which a possible explanation would be a significant amount of dust around it. This would imply that the companion candidate is young, which would strengthen the case for a physical companion, and moreover that the object would be in the substellar regime, according to the Ks upper limit. Another exciting possibility would be that this companion is a recently formed planet within the disk. Additional observations are mandatory to confirm that the object is bound and to properly characterize it.Comment: 4 pages, 4 figures; accepted for publication by A&
    corecore