621 research outputs found

    Shocking advantage! Improving digital game performance using non-invasive brain stimulation

    Get PDF
    As digital gaming has grown from a leisure activity into a competitive endeavor with college scholarships, celebrity, and large prize pools at stake, players search for ways to enhance their performance, including through coaching, training, and employing tools that yield a performance advantage. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that is presently being explored by esports athletes and competitive gamers. Although shown to modulate cognitive processing in standard laboratory tasks, there is little scientific evidence that tDCS improves performance in digital games, which are visually complex and attentionally demanding environments. We applied tDCS between two sessions of the Stop-Signal Game (SSG; Friehs, Dechant, Vedress, Frings, Mandryk, 2020). The SSG is a custom-built infinite runner that is based on the Stop-Signal Task (SST; Verbruggen et al., 2019). Consequently, the SSG can be used to evaluate response inhibition as measured by Stop-Signal Reaction Time (SSRT), but in an enjoyable 3D game experience. We used anodal, offline tDCS to stimulate the right dorsolateral prefrontal cortex (rDLPFC); a 9 cm² anode was always positioned over the rDLPFC while the 35 cm² cathode was placed over the left deltoid. We hypothesized that anodal tDCS would enhance neural processing (as measured by a decrease in SSRT) and improve performance, while sham stimulation (i.e., the control condition with a faked stimulation) should lead to no significant change. In a sample of N = 45 healthy adults a significant session x tDCS-condition interaction emerged in the expected direction. Subsequent analysis confirmed that the statistically significant decrease in SSRT after anodal tDCS to the rDLPFC was not due to a general change in reaction times. These results provide initial evidence that tDCS can influence performance in digital games

    Effective gamification of the stop-signal task: Two controlled laboratory experiments

    Get PDF
    BACKGROUND A lack of ability to inhibit prepotent responses, or more generally a lack of impulse control, is associated with several disorders such as attention-deficit/hyperactivity disorder and schizophrenia as well as general damage to the prefrontal cortex. A stop-signal task (SST) is a reliable and established measure of response inhibition. However, using the SST as an objective assessment in diagnostic or research-focused settings places significant stress on participants as the task itself requires concentration and cognitive effort and is not particularly engaging. This can lead to decreased motivation to follow task instructions and poor data quality, which can affect assessment efficacy and might increase drop-out rates. Gamification-the application of game-based elements in nongame settings-has shown to improve engaged attention to a cognitive task, thus increasing participant motivation and data quality. OBJECTIVE This study aims to design a gamified SST that improves participants' engagement and validate this gamified SST against a standard SST. METHODS We described the design of our gamified SST and reported on 2 separate studies that aim to validate the gamified SST relative to a standard SST. In study 1, a within-subject design was used to compare the performance of the SST and a stop-signal game (SSG). In study 2, we added eye tracking to the procedure to determine if overt attention was affected and aimed to replicate the findings from study 1 in a between-subjects design. Furthermore, in both studies, flow and motivational experiences were measured. RESULTS In contrast, the behavioral performance was comparable between the tasks (P<.87; BF01=2.87), and the experience of flow and intrinsic motivation were rated higher in the SSG group, although this difference was not significant. CONCLUSIONS Overall, our findings provide evidence that the gamification of SST is possible and that the SSG is enjoyed more. Thus, when participant engagement is critical, we recommend using the SSG instead of the SST

    Effects of high-protein intake on bone turnover in long-term bed rest in women

    Get PDF
    Bed rest (BR) causes bone loss, even in otherwise healthy subjects. Several studies suggest that ambulatory subjects may benefit from high-protein intake to stimulate protein synthesis and to maintain muscle mass. However, increasing protein intake above the recommended daily intake without adequate calcium and potassium intake may increase bone resorption. We hypothesized that a regimen of high-protein intake (HiPROT), applied in an isocaloric manner during BR, with calcium and potassium intake meeting recommended values, would prevent any effect of BR on bone turnover. After a 20-day ambulatory adaptation to a controlled environment, 16 women participated in a 60-day, 6\ub0 head-down-tilt (HDT) BR and were assigned randomly to 1 of 2 groups. Control (CON) subjects (n = 8) received 1 g/(kg body mass\ub7day)-1 dietary protein. HiPROT subjects (n = 8) received 1.45 g protein/(kg body mass\ub7day)-1 plus an additional 0.72 g branched-chain amino acids per day during BR. All subjects received an individually tailored diet (before HDTBR: 1888 \ub1 98 kcal/day; during HDTBR: 1604 \ub1 125 kcal/day; after HDTBR: 1900 \ub1 262 kcal/day), with the CON group's diet being higher in fat and carbohydrate intake. High-protein intake exacerbated the BR-induced increase in bone resorption marker C-telopeptide (>30%) (p < 0.001) by the end of BR. Bone formation markers were unaffected by BR and high-protein intake. We conclude that high-protein intake in BR might increase bone loss. Further long-duration studies are mandatory to show how the positive effect of protein on muscle mass can be maintained without the risk of reducing bone mineral density

    High frequency magnetic oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) in pulsed magnetic field of up to 81 T

    Full text link
    De Haas-van Alphen oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) are studied in pulsed magnetic fields up to 81 T. The long decay time of the pulse allows determining reliable field-dependent amplitudes of Fourier components with frequencies up to several kiloteslas. The Fourier spectrum is in agreement with the model of a linear chain of coupled orbits. In this model, all the observed frequencies are linear combinations of the frequency linked to the basic orbit α\alpha and to the magnetic-breakdown orbit β\beta.Comment: 6 pages, 4 figure

    Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease

    Get PDF
    Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD

    Phase diagram of UPt3_3 in the E1gE_{1g} model

    Full text link
    The phase diagram of the unconventional superconductor UPt3_3 is explained under the long-standing hypothesis that the pair wavefunction belongs to the E1gE_{1g} representation of the point group. The main objection to this theory has been that it disagrees with the experimental phase diagram when a field is applied along the c-axis. By a careful analysis of the free energy this objection is shown to be incorrect. This singlet theory also explains the unusual anisotropy in the upper critical field curves, often thought to indicate a triplet pair function.Comment: 11 pages, Revtex, 2 figures (uuencoded, gzip'ed Postscript

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    Methods for the study of ionic currents and Ca(2+)-signals in isolated colonic crypts

    Get PDF
    Isolated epithelial cells from intestinal mucosae are a suitable object for the study of the regulation of ion transport in the gut. This regulation possesses a great importance for human and veterinary medicine, as diarrheal diseases, which often are caused by an inadequate activation of intestinal anion secretion, are one of the major lethal diseases of children or young animals. The aim of this paper is to describe a method for the isolation of intact colonic crypts, e.g. for the subsequent investigation of the regulation of anion secretion by the intracellular second messenger, Ca(2+) using electrophysiological and imaging techniques

    E1gE_{1g} model of superconducting UPt3_3

    Full text link
    The phase diagram of superconducting UPt3_3 is explained in a Ginzburg-Landau theory starting from the hypothesis that the order parameter is a pseudo-spin singlet which transforms according to the E1gE_{1g} representation of the D6hD_{6h} point group. We show how to compute the positions of the phase boundaries both when the applied field is in the basal plane and when it is along the c-axis. The experimental phase diagrams as determined by longitudinal sound velocity data can be fit using a single set of parameters. In particular the crossing of the upper critical field curves for the two field directions and the apparent isotropy of the phase diagram are reproduced. The former is a result of the magnetic properties of UPt3_3 and their contribution to the free energy in the superconducting state. The latter is a consequence of an approximate particle-hole symmetry. Finally we extend the theory to finite pressure and show that, in contrast to other models, the E1gE_{1g} model explains the observed pressure dependence of the phase boundaries.Comment: RevTex, 29 pages, 18 PostScript figures in a uuencoded, gzipped tar file. PostScript version of paper, tar file of PostScript figures and individual PostScript figures are also available via anonymous ftp at ftp://nym.physics.wisc.edu/anonymou/papers/upt3
    • …
    corecore