7 research outputs found

    Charge fluctuations in chiral models and the QCD phase transition

    Full text link
    We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.Comment: 4 pages, 3 figures, to appear in the proceedings of Quark Matter 2011, 23-28 May 2011, Annecy, Franc

    The renormalization group and quark number fluctuations in the Polyakov loop extended quark-meson model at finite baryon density

    Full text link
    Thermodynamics and the phase structure of the Polyakov loop-extended two flavors chiral quark--meson (PQM) model is explored beyond the mean-field approximation. The analysis of the PQM model is based on the functional renormalization group (FRG) method. We formulate and solve the renormalization group flow equation for the scale-dependent thermodynamic potential in the presence of the gluonic background field at finite temperature and density. We determine the phase diagram of the PQM model in the FRG approach and discuss its modification in comparison with the one obtained under the mean-field approximation. We focus on properties of the net-quark number density fluctuations as well as their higher moments and discuss the influence of non-perturbative effects on their properties near the chiral crossover transition. We show, that with an increasing net-quark number density the higher order moments exhibit a peculiar structure near the phase transition. We also consider ratios of different moments of the net-quark number density and discuss their role as probes of deconfinement and chiral phase transitions

    Net-proton probability distribution in heavy ion collisions

    Full text link
    We compute net-proton probability distributions in heavy ion collisions within the hadron resonance gas model. The model results are compared with data taken by the STAR Collaboration in Au-Au collisions at sqrt(s_{NN})= 200 GeV for different centralities. We show that in peripheral Au-Au collisions the measured distributions, and the resulting first four moments of net-proton fluctuations, are consistent with results obtained from the hadron resonance gas model. However, data taken in central Au-Au collisions differ from the predictions of the model. The observed deviations can not be attributed to uncertainties in model parameters. We discuss possible interpretations of the observed deviations.Comment: 4 pages, 2 figure

    Net-charge probability distributions in heavy ion collisions at chemical freeze-out

    Get PDF
    We explore net charge probability distributions in heavy ion collisions within the hadron resonance gas model. The distributions for strangeness, electric charge and baryon number are derived. We show that, within this model, net charge probability distributions and the resulting fluctuations can be computed directly from the measured yields of charged and multi-charged hadrons. The influence of multi-charged particles and quantum statistics on the shape of the distribution is examined. We discuss the properties of the net proton distribution along the chemical freeze-out line. The model results presented here can be compared with data at RHIC energies and at the LHC to possibly search for the relation between chemical freeze-out and QCD cross-over lines in heavy ion collisions.Comment: 21 pages, 6 figure

    Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC

    Full text link
    We discuss the relevance of higher order moments of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic structure of these higher moments at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order moments of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second to fourth order moments of the net proton number fluctuations at RHIC. We point out that the sixth order moments of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the thermal freeze-out to the crossover line.Comment: 24 pages, 12 EPS files, revised version, to appear in EPJ
    corecore