3,843 research outputs found
Russiske Landbrugsforhold og Udsigterne for vor Udførsel til Rusland.
Russiske Landbrugsforhold og Udsigterne for vor Udførsel til Rusland
Landbrugsforholdene i de russiske Ăstersøprovinser.
Landbrugsforholdene i de russiske Ăstersøprovinser
Landbrugsforholdene i de russiske Ăstersøprovinser.
Landbrugsforholdene i de russiske Ăstersøprovinser
Alternative mapping of probes to genes for Affymetrix chips
<p>Abstract</p> <p>Background</p> <p>Short oligonucleotide arrays have several probes measuring the expression level of each target transcript. Therefore the selection of probes is a key component for the quality of measurements. However, once probes have been selected and synthesized on an array, it is still possible to re-evaluate the results using an updated mapping of probes to genes, taking into account the latest biological knowledge available.</p> <p>Methods</p> <p>We investigated how probes found on recent commercial microarrays for human genes (Affymetrix HG-U133A) were matching a recent curated collection of human transcripts: the NCBI RefSeq database. We also built mappings and used them in place of the original probe to genes associations provided by the manufacturer of the arrays.</p> <p>Results</p> <p>In a large number of cases, 36%, the probes matching a reference sequence were consistent with the grouping of probes by the manufacturer of the chips. For the remaining cases there were discrepancies and we show how that can affect the analysis of data.</p> <p>Conclusions</p> <p>While the probes on Affymetrix arrays remain the same for several years, the biological knowledge concerning the genomic sequences evolves rapidly. Using up-to-date knowledge can apparently change the outcome of an analysis.</p
Relativistic entanglement of two massive particles
We describe the spin and momentum degrees of freedom of a system of two
massive spin-- particles as a 4 qubit system. Then we explicitly
show how the entanglement changes between different partitions of the qubits,
when considered by different inertial observers. Although the two particle
entanglement corresponding to a partition into Alice's and Bob's subsystems is,
as often stated in the literature, invariant under Lorentz boosts, the
entanglement with respect to other partitions of the Hilbert space on the other
hand, is not. It certainly does depend on the chosen inertial frame and on the
initial state considered. The change of entanglement arises, because a Lorentz
boost on the momenta of the particles causes a Wigner rotation of the spin,
which in certain cases entangles the spin- with the momentum states. We
systematically investigate the situation for different classes of initial spin
states and different partitions of the 4 qubit space.
Furthermore, we study the behavior of Bell inequalities for different
observers and demonstrate how the maximally possible degree of violation, using
the Pauli-Lubanski spin observable, can be recovered by any inertial observer.Comment: 17 pages, 4 figure
Relativistic quantum clocks
The conflict between quantum theory and the theory of relativity is
exemplified in their treatment of time. We examine the ways in which their
conceptions differ, and describe a semiclassical clock model combining elements
of both theories. The results obtained with this clock model in flat spacetime
are reviewed, and the problem of generalizing the model to curved spacetime is
discussed, before briefly describing an experimental setup which could be used
to test of the model. Taking an operationalist view, where time is that which
is measured by a clock, we discuss the conclusions that can be drawn from these
results, and what clues they contain for a full quantum relativistic theory of
time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for
"Workshop on Time in Physics" Zurich 201
- âŚ