8 research outputs found

    Webs of influence: Investigating the effects of the forest mycorrhizosphere on soil carbon storage in a changing world

    Get PDF
    Anthropogenic climate change is broadly accepted to be the biggest threat to ecosystems in the 21st century, with the most rapid change occurring in Arctic regions. It is necessary to understand the consequences of on-going warming, such as changing vegetation and northward advance of Arctic treelines, as well as examining the robustness of proposed mitigation strategies, such as intensified tree planting. Using field based approaches in soil carbon rich sub-Arctic and high latitude boreal regions, I found that Betula pubescens roots and associated mycorrhizal fungi extend 3-4.5 m away from trees, thereby covering open forest gaps, possibly creating a ‘wood-wide-web’. However, I found no evidence of common mycelial networks between trees or the understorey in these forests. My findings indicate consistent high production of roots and mycorrhizas throughout the forest floor, coupled with declining soil organic carbon (SOC) stocks with increasing distance from trees. In the Scottish uplands, with comparable tree and understorey species, I found that planting B. pubescens onto heather moorland leads to a 58 and 50% loss of SOC stocks 12 and 39 years after planting, resulting in no net gain in ecosystem C. Long term tree planting experiments provide empirical evidence for the consequences of tree planting schemes as a climate change mitigation strategy and the potential effects of warming-driven encroachment of Arctic treeline forests onto globally important ericaceous soil carbon stores. Combined, my results show how B. pubescens mycorrhizospheres - their roots and associated mycorrhizas - effectively explore throughout the forest floor and shape the spatial dynamics and depletion of soil carbon stocks in Arctic and boreal regions most vulnerable to climate change. Furthermore, this work suggests that, although urgent action on climate change is needed, awareness of the ecological context is crucial if planting trees is to be a robust strategy for climate change mitigation

    Spatial patterns in soil organic matter dynamics are shaped by mycorrhizosphere interactions in a treeline forest

    Get PDF
    Aims In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes. Methods We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR. Results Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees. Conclusions As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration

    Whole-crown 13C-pulse labelling in a sub-arctic woodland to target canopy-specific carbon fluxes

    Get PDF
    Climate change-driven increases in plant productivity have been observed at high northern latitudes. These trends are driven, in part, by the increasing abundance of tall shrub and tree species in arctic ecosystems, and the advance of treelines. Higher plant productivity may alter carbon (C) allocation and, hence, ecosystem C cycling and soil C sequestration. It is important to understand the contributions that the newly established canopy forming overstorey species makes to C cycling in these ecosystems. However, the presence of a dense understorey cover makes this challenging, with established partitioning approaches causing disturbance and potentially introducing measurement artefacts. Here, we develop an in situ whole-crown 13C-pulse labelling technique to isolate canopy C fluxes in areas of dense understorey cover. The crowns of five mountain birch (Betula pubescens ssp. czerepanovii) trees were provided with a 13CO2 pulse using portable field equipment, and leaf samples were collected from neighbouring con-specific trees and hetero-specific understorey shrubs on days 1–10 and 377 post-crown labelling. We found effective and long-term enrichment of foliage in labelled trees, but no evidence of the 13C-signal in con- or hetero-specific neighbouring trees or woody shrubs. This method is promising and provides a valuable tool to isolate the role of canopy tree species in ecosystems with dense understorey cover.Output Status: Forthcoming/Available Onlin

    Resistance of subarctic soil fungal and invertebrate communities to disruption of below-ground carbon supply

    Get PDF
    The supply of recent photosynthate from plants to soils is thought to be a critical mechanism regulating the activity and diversity of soil biota. In the Arctic, large-scale vegetation transitions are underway in response to warming, and there is an urgent need to understand how these changes affect soil biodiversity and function. We investigated how abundance and diversity of soil fungi and invertebrates responded to a reduction in fresh below-ground photosynthate supply in treeline birch and willow, achieved using stem girdling. We hypothesised that birch forest would support greater abundance of ectomycorrhizal (ECM) fungal species and fauna than willow shrubs, and that girdling would result in a rapid switch from ECM fungi to saprotrophs as canopy supply of C was cut, with a concomitant decline in soil fauna. Birch forest had greater fungal and faunal abundance with a large contribution of root-associated ascomycetes (ericoid mycorrhizal fungi and root endophytes) compared to willow shrub plots, which had a higher proportion of saprotrophs and, contrary to our expectations, ECM fungi. Broad-scale soil fungal and faunal functional group composition was not significantly changed by girdling, even in the third year of treatment. Within the ECM community, there were some changes, with genera that are believed to be particularly C-demanding declining in girdled plots. However, it was notable how most ECM fungi remained present after 3 years of isolation of the below-ground compartment from contemporary photosynthate supply. Synthesis. In a treeline/tundra ecosystem, distinct soil communities existed in contrasting vegetation patches within the landscape, but the structure of these communities was resistant to canopy disturbance and concomitant reduction of autotrophic C inputs

    Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape

    Get PDF
    In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks are predominantly located below ground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. To identify the role of canopy‐forming species in below‐ground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and below‐ground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53% ‐double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic since productivity and ecosystem C sequestration are not synonymous

    Tree planting in organic soils does not result in net carbon sequestration on decadal timescales

    Get PDF
    Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris ), of widespread Eurasian distribution, onto heather (Calluna vulgaris ) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens ; and no net gain at additional stands of P. sylvestris . We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes

    Resistance of subarctic soil fungal and invertebrate communities to disruption of below‐ground carbon supply

    Get PDF
    Abstract: The supply of recent photosynthate from plants to soils is thought to be a critical mechanism regulating the activity and diversity of soil biota. In the Arctic, large‐scale vegetation transitions are underway in response to warming, and there is an urgent need to understand how these changes affect soil biodiversity and function. We investigated how abundance and diversity of soil fungi and invertebrates responded to a reduction in fresh below‐ground photosynthate supply in treeline birch and willow, achieved using stem girdling. We hypothesised that birch forest would support greater abundance of ectomycorrhizal (ECM) fungal species and fauna than willow shrubs, and that girdling would result in a rapid switch from ECM fungi to saprotrophs as canopy supply of C was cut, with a concomitant decline in soil fauna. Birch forest had greater fungal and faunal abundance with a large contribution of root‐associated ascomycetes (ericoid mycorrhizal fungi and root endophytes) compared to willow shrub plots, which had a higher proportion of saprotrophs and, contrary to our expectations, ECM fungi. Broad‐scale soil fungal and faunal functional group composition was not significantly changed by girdling, even in the third year of treatment. Within the ECM community, there were some changes, with genera that are believed to be particularly C‐demanding declining in girdled plots. However, it was notable how most ECM fungi remained present after 3 years of isolation of the below‐ground compartment from contemporary photosynthate supply. Synthesis. In a treeline/tundra ecosystem, distinct soil communities existed in contrasting vegetation patches within the landscape, but the structure of these communities was resistant to canopy disturbance and concomitant reduction of autotrophic C inputs
    corecore