96 research outputs found

    The effects of feed composition and level on lactational performance in rats and dairy cows: a basic approach to feed description

    Get PDF
    An investigation into the effects of feed composition on lactational performance was carried out using rats and cows. A graphical representation of the feed as a triangle was used to aid the interpretation of results. The first rat experiment showed that, on high protein feeds, the lactational performance of rats is not depressed when offered feeds of very low carbohydrate content. This was substantiated by the other rat experiments. When carbohydrate in the feed was replaced by fat at low protein content (rat experiment 2) there was a large depression in lactational performance, effectively a cessation of milk production. The interaction between the three feed components protein, carbohydrate, and fat was highly significant. The hypothesis that maternal heat production was limiting food intake was advanced. The third rat experiment used feeds whose composition was marginal in relation to lactational success. The feeds also allowed comparison between feeds of constant nutrient:energy ratio. The results of this experiment indicated that there is an extremely abrupt threshold in feed composition for adequate lactation. This effect could not be attributed to any one nutrient:energy ratio. This experiment also showed the importance of maternal body reserves in support of lactation. A model was developed to explore the hypothesis that maternal heat production was limiting performance, however this model failed. An experiment using sheep was conducted in order to permit prediction of the volatile fatty acid proportions arising from a range of feeds. This experiment was designed to allow application of the rat work to dairy cows. A dairy cow trial was conducted, to compare different feed types and feeding levels. The results of this trial showed no effect of feed type on lactational performance. A linear relationship between food intake and level of milk production was found. This included an effect of feeding level on rate of decline in milk yield. All these findings are discussed in detail

    Lameness in cows affects daily feeding time but not rumination time as characterized from sensors

    Get PDF
    Lameness in cows affects daily feeding time but not rumination time as characterized from sensors. 3. DairyCare Conferenc

    Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources

    Get PDF
    [EN] Background: Farm animals are normally selected under highly controlled, non-limiting conditions to favour the expression of their genetic potential. Selection strategies can also focus on a single trait to favour the most specialized animals. Theoretically, if the environment provides enough resources, the selection strategy should not lead to changes in the interactions between life functions such as reproduction and survival. However, highly specialized farm animals can be required for breeding under conditions that differ largely from selection conditions. The consequence is a degraded ability of specialized animals to sustain reproduction, production and health, which leads to a reduced lifespan. This study was designed to address this issue using maternal rabbit lines. A highly specialized line with respect to numerical productivity at weaning (called V) and a generalist line that originated from females with a long reproductive life (called LP) were used to study the strategies that these lines develop to acquire and use the available resources when housed in different environments. In addition, two generations of line V, generations 16 and 36, were available simultaneously, which contributed to better understand how selection criteria applied in a specific environment changed the interplay between functions related to reproduction and survival. Results: We show that, under constrained conditions, line LP has a greater capacity for resource acquisition than line V, which prevents excessive mobilization of body reserves. However, 20 generations of selection for litter size at weaning did not lead to an increased capacity of nutrient (or resource) acquisition. For the two generations of line V, the partitioning of resources between milk production, body reserves preservation or repletion or foetal growth differed. Conclusions: Combining foundational and selection criteria with a specific selection environment resulted in female rabbits that had a different capacity to deal with environmental constraints. An increased robustness was considered as an emergent property of combining a multiple trait foundational criterion with a wide range of environmental conditions. Since such a strategy was successful to increase the robustness of female rabbits without impairing their productivity, there is no reason that it should not be applied in other livestock species.The authors thank Juan Carlos Moreno Pardo, Luis Rodenas Martinez and Eugenio Martinez Paredes for their technical support, and Doctors Manuel Baselga Izquierdo, Enrique Blas Ferrer and Concha Cervera Fras for their valuable comments in the first version of this work. We also thank the Spanish Ministry of Education and Science (Project AGL2011-30170-C02-01) for the economic support.Savietto, D.; Friggens, NC.; Pascual Amorós, JJ. (2015). Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genetics Selection Evolution. 47(2):1-11. https://doi.org/10.1186/s12711-014-0073-5S111472Knap, P. W. (2005). Breeding robust pigs. Australian Journal of Experimental Agriculture, 45(8), 763. doi:10.1071/ea05041Havenstein, G., Ferket, P., & Qureshi, M. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82(10), 1500-1508. doi:10.1093/ps/82.10.1500Havenstein, G., Ferket, P., & Qureshi, M. (2003). Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82(10), 1509-1518. doi:10.1093/ps/82.10.1509Hansen, L. B. (2000). Consequences of Selection for Milk Yield from a Geneticist’s Viewpoint. Journal of Dairy Science, 83(5), 1145-1150. doi:10.3168/jds.s0022-0302(00)74980-0Poggenpoel, D. G., Ferreira, G. F., Hayes, J. P., & du Preez, J. J. (1996). Response to long‐term selection for egg production in laying hens. British Poultry Science, 37(4), 743-756. doi:10.1080/00071669608417904Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527Garcı́a, M. L., & Baselga, M. (2002). Estimation of genetic response to selection in litter size of rabbits using a cryopreserved control population. Livestock Production Science, 74(1), 45-53. doi:10.1016/s0301-6226(01)00280-9Horan, B., Dillon, P., Faverdin, P., Delaby, L., Buckley, F., & Rath, M. (2005). The Interaction of Strain of Holstein-Friesian Cows and Pasture-Based Feed Systems on Milk Yield, Body Weight, and Body Condition Score. Journal of Dairy Science, 88(3), 1231-1243. doi:10.3168/jds.s0022-0302(05)72790-9Lucy, M. C. (2001). Reproductive Loss in High-Producing Dairy Cattle: Where Will It End? Journal of Dairy Science, 84(6), 1277-1293. doi:10.3168/jds.s0022-0302(01)70158-0Felver-Gant, J. N., Mack, L. A., Dennis, R. L., Eicher, S. D., & Cheng, H. W. (2012). Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poultry Science, 91(7), 1542-1551. doi:10.3382/ps.2011-01988Vicente, J. S., Llobat, L., Viudes-de-Castro, M. P., Lavara, R., Baselga, M., & Marco-Jiménez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77(1), 81-88. doi:10.1016/j.theriogenology.2011.07.019Lavara, R., Vicente, J. S., & Baselga, M. (2012). Estimation of genetic parameters for semen quality traits and growth rate in a paternal rabbit line. Theriogenology, 78(3), 567-575. doi:10.1016/j.theriogenology.2012.03.002Rauw, W. ., Kanis, E., Noordhuizen-Stassen, E. ., & Grommers, F. . (1998). Undesirable side effects of selection for high production efficiency in farm animals: a review. Livestock Production Science, 56(1), 15-33. doi:10.1016/s0301-6226(98)00147-xTheilgaard, P., Sánchez, J., Pascual, J., Berg, P., Friggens, N. C., & Baselga, M. (2007). Late reproductive senescence in a rabbit line hyper selected for reproductive longevity, and its association with body reserves. Genetics Selection Evolution, 39(2), 207. doi:10.1186/1297-9686-39-2-207Sánchez, J. P., Theilgaard, P., Mínguez, C., & Baselga, M. (2008). Constitution and evaluation of a long-lived productive rabbit line1. Journal of Animal Science, 86(3), 515-525. doi:10.2527/jas.2007-0217Van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics. The American Naturalist, 128(1), 137-142. doi:10.1086/284547Reznick, D., Nunney, L., & Tessier, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution, 15(10), 421-425. doi:10.1016/s0169-5347(00)01941-8Theilgaard, P., Baselga, M., Blas, E., Friggens, N. C., Cervera, C., & Pascual, J. J. (2009). Differences in productive robustness in rabbits selected for reproductive longevity or litter size. animal, 3(5), 637-646. doi:10.1017/s1751731109003838Savietto, D., Cervera, C., Blas, E., Baselga, M., Larsen, T., Friggens, N. C., & Pascual, J. J. (2013). Environmental sensitivity differs between rabbit lines selected for reproductive intensity and longevity. animal, 7(12), 1969-1977. doi:10.1017/s175173111300178xEstany, J., Baselga, M., Blasco, A., & Camacho, J. (1989). Mixed model methodology for the estimation of genetic response to selection in litter size of rabbits. Livestock Production Science, 21(1), 67-75. doi:10.1016/0301-6226(89)90021-3Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Ferrian, S., Guerrero, I., Blas, E., García-Diego, F. J., Viana, D., Pascual, J. J., & Corpa, J. M. (2012). How selection for reproduction or foundation for longevity could have affected blood lymphocyte populations of rabbit does under conventional and heat stress conditions. Veterinary Immunology and Immunopathology, 150(1-2), 53-60. doi:10.1016/j.vetimm.2012.08.007Ferrian, S., Blas, E., Larsen, T., Sánchez, J. P., Friggens, N. C., Corpa, J. M., … Pascual, J. J. (2013). Comparison of immune response to lipopolysaccharide of rabbit does selected for litter size at weaning or founded for reproductive longevity. Research in Veterinary Science, 94(3), 518-525. doi:10.1016/j.rvsc.2013.01.008García-Diego, F.-J., Pascual, J. J., & Marco, F. (2011). Technical Note: Design of a large variable temperature chamber for heat stress studies in rabbits. World Rabbit Science, 19(4). doi:10.4995/wrs.2011.938Savietto, D., Blas, E., Cervera, C., Baselga, M., Friggens, N. C., Larsen, T., & Pascual, J. J. (2012). Digestive efficiency in rabbit does according to environment and genetic type. World Rabbit Science, 20(3). doi:10.4995/wrs.2012.1152Xiccato, G., & Trocino, A. (s. f.). Energy and protein metabolism and requirements. Nutrition of the rabbit, 83-118. doi:10.1079/9781845936693.0083Fortun-Lamothe, L., & Lebas, F. (1996). Effects of dietary energy level and source on foetal development and energy balance in concurrently pregnant and lactating primiparous rabbit does. Animal Science, 62(3), 615-620. doi:10.1017/s1357729800015174Cervera, C., & Carmona, J. F. (s. f.). Nutrition and the climatic environment. Nutrition of the rabbit, 267-284. doi:10.1079/9781845936693.0267Costa, C., Baselga, M., Lobera, J., Cervera, C., & Pascual, J. J. (2004). Evaluating response to selection and nutritional needs in a three-way cross of rabbits. Journal of Animal Breeding and Genetics, 121(3), 186-196. doi:10.1111/j.1439-0388.2004.00450.xQuevedo, F., Cervera, C., Blas, E., Baselga, M., Costa, C., & Pascual, J. J. (2005). Effect of selection for litter size and feeding programme on the performance of young rabbit females during rearing and first pregnancy. Animal Science, 80(2), 161-168. doi:10.1079/asc40850161Friggens, N. C., Ingvartsen, K. L., & Emmans, G. C. (2004). Prediction of Body Lipid Change in Pregnancy and Lactation. Journal of Dairy Science, 87(4), 988-1000. doi:10.3168/jds.s0022-0302(04)73244-0Friggens, N. C. (2003). Body lipid reserves and the reproductive cycle: towards a better understanding. Livestock Production Science, 83(2-3), 219-236. doi:10.1016/s0301-6226(03)00111-8Turer, A. T., & Scherer, P. E. (2012). Adiponectin: mechanistic insights and clinical implications. Diabetologia, 55(9), 2319-2326. doi:10.1007/s00125-012-2598-xTheilgaard, P., Sánchez, J. P., Pascual, J. J., Friggens, N. C., & Baselga, M. (2006). Effect of body fatness and selection for prolificacy on survival of rabbit does assessed using a cryopreserved control population. Livestock Science, 103(1-2), 65-73. doi:10.1016/j.livsci.2006.01.007Sánchez, J. P., de la Fuente, L. F., & Rosell, J. M. (2012). Health and body condition of lactating females on rabbit farms1. Journal of Animal Science, 90(7), 2353-2361. doi:10.2527/jas.2011-4065Coureaud, G., Schaal, B., Coudert, P., Rideaud, P., Fortun-Lamothe, L., Hudson, R., & Orgeur, P. (2000). Immediate postnatal sucking in the rabbit: Its influence on pup survival and growth. Reproduction Nutrition Development, 40(1), 19-32. doi:10.1051/rnd:2000117Rosell, J. M., & de la Fuente, L. F. (2009). Culling and mortality in breeding rabbits. Preventive Veterinary Medicine, 88(2), 120-127. doi:10.1016/j.prevetmed.2008.08.003Fortun-Lamothe, L., Prunier, A., Bolet, G., & Lebas, F. (1999). Physiological mechanisms involved in the effects of concurrent pregnancy and lactation on foetal growth and mortality in the rabbit. Livestock Production Science, 60(2-3), 229-241. doi:10.1016/s0301-6226(99)00096-2Kirkwood, T. B. . (2002). Evolution of ageing. Mechanisms of Ageing and Development, 123(7), 737-745. doi:10.1016/s0047-6374(01)00419-5Kirkwood, T. B. L. (2005). Understanding the Odd Science of Aging. Cell, 120(4), 437-447. doi:10.1016/j.cell.2005.01.027Snell, T. W., & King, C. E. (1977). Lifespan and Fecundity Patterns in Rotifers: The Cost of Reproduction. Evolution, 31(4), 882. doi:10.2307/2407451Stearns, S. C. (1989). Trade-Offs in Life-History Evolution. Functional Ecology, 3(3), 259. doi:10.2307/238936

    Allometric scaling of the elevation of maternal energy intake during lactation

    Get PDF
    In most mammals, lactating mothers dramatically increase their food intake after parturition and reach a peak intake rate after a certain time while their offspring continue to grow. A common view, perpetuated by the metabolic theory of ecology, is that the allometric scaling of maternal metabolic rate with body mass limits the changes in energy intake and expenditure. Therefore these potential effects of metabolic scaling should be reflected in the elevation of maternal energy intake during lactation. To test this hypothesis, we collected published data on 24 species (13 domesticated) and established scaling relationships for several characteristics of the patterns of energy intake elevation (amplitude of the elevation, time to peak, and cumulative elevation to peak). A curvilinear allometric scaling relationship with maternal body mass (in double-logarithmic space) was found for the amplitude of maternal energy intake elevation, similarly to what has been observed for scaling relationships of basal metabolic rate in non-breeding mammals. This result indirectly supports the metabolic theory of ecology. However, this curvilinear allometric scaling does not seem to drive the scaling relationships found for the other characteristics of maternal energy intake. Both the duration and shape of the energy intake patterns showed substantial variation independently of species’ body mass. Data available for a few mammals, mostly domesticated, provides little evidence for the hypothesis that a single law of metabolic scaling governs the elevation of maternal energy intake after parturition. Obtaining further food intake data in wild species will be crucial to unravel the general mechanisms underlying variation in this unique adaptation of mammalian females

    Reconsidering acquisition and allocation in animal nutrition models to better understand efficiency

    No full text
    Reconsidering acquisition and allocation in animal nutrition models to better understand efficiency. 66. Annual Meeting of the European Federation of Animal Science (EAAP

    Using selection trajectories to optimize energy acquisition and allocation according to nutritional environment: toward a better understanding of trade-offs among biological functions

    No full text
    Using selection trajectories to optimize energy acquisition and allocation according to nutritional environment: toward a better understanding of trade-offs among biological functions. 8. International Workshop Modelling Nutrient Digestion and Utilization in Farm Animal

    Towards resilient livestock systems (a resource allocation approach to combine selection and management within the herd environment)

    No full text
    Sélectionner les animaux qui ont le plus haut niveau de production, en tenant peu compte d autres caractères, a toujours bien fonctionné dans les conditions d un environnement favorable (i.e. ration riche en nutriments, faible charge pathogène, thermoneutralité). Toutefois, pour de nombreuses raisons (économiques, climatiques, écologiques), les éleveurs auront sans doute de plus en plus de mal à réunir de telles conditions dans l environnement de leur troupeau, et pourront même délibérément choisir de ne pas le faire. Sélectionner des animaux qui soient adaptés avec les conditions futures des troupeaux devient donc tout aussi important qu adapter la conduite du troupeau en fonction des génotypes sélectionnés. Pour mieux identifier les contraintes et les opportunités d'appliquer ces deux options, nous proposons, pour la première fois dans cette thèse, un modèle animal intégrant les effets de la sélection génétique et de la conduite du troupeau. Ce modèle intègre des coefficients d allocation de la ressource alimentaire entre les fonctions biologiques en tant que caractères héritables Il permet de simuler à court-terme les performances zootechniques et à long-terme les réponses à la sélection résultant de la transmission de ces caractères d allocation entre générations. Le modèle a été appliqué à la chèvre laitière et se focalise sur la conduite en lactation longue (LL) d une partie des chèvres du troupeau (conduite consistant à préserver des femelles en lactation ayant après une mise bas sans réengagement d une nouvelle reproduction). Nous sommes partis du principe que la sélection et la conduite du troupeau influencent tous deux la façon dont chaque animal alloue ses ressources entre ses fonctions biologiques. Nous avons cherché à évaluer la portée de ce principe pour mieux comprendre le développement des interactions génotype-environnement (G x E) sur le long terme. Dans un troupeau soumis à des variations du niveau d'alimentation, différentes stratégies de sélection ciblant l amélioration de la production laitière et de la longévité ont été simulées. En accord avec la théorie de l allocation, les réponses à la sélection révèlent que l amélioration de la production et de la survie doit faire face à un compromis entre ces deux caractères. Cependant, ce compromis est atténué lorsque la sélection est combinée avec la conduite en LL d une partie du troupeau. Un tel effet de synergie entre sélection et conduite résulte d une interaction complexe entre la dynamique individuelle de performance au cours de la LL et le renouvellement du troupeau. Ainsi, la capacité innée des chèvres à prolonger leur lactation semble pouvoir être valorisée pour améliorer la résilience du troupeau.Selecting those animals that have the greatest level of production, with little regard for other traits, has historically worked well in a favorable environment (i.e. nutrient-rich diet, low pathogen load, thermo-neutrality). However, for numerous reasons (economic, climatic, ecological) farmers will find it increasingly difficult, and indeed may actively choose not, to provide such favorable conditions in their herd environment. Selecting animals that match the future herd environments thus becomes as important as managing the herd environment to match the selected genotypes. To better identify constraints and opportunities to apply these two options, we propose, for the first time, in this thesis an animal model integrating the effects of selection and management. This model integrates resource allocation between life-functions resource as heritable traits. It enables simulating short-term performance and long-term selection response resulting from the transmission of allocation traits between generations. The model was applied to the dairy goat and focused on the management of extended lactation (EL) for a part of the herd (management practice based on keeping females in lactation without a new reproductive cycle). Both selection and management were assumed to influence the way every animal allocates its resource between functions. We aimed to assess the significance of this assumption for a better understanding of the development of genotype-environment interactions (G . E) over the long-term. In a herd subject to variations in the feeding level, different selection strategies aiming at improving milk production and longevity were simulated. In agreement with the resource allocation theory, the selection responses show improving production and survival has to face a trade-off between these two traits. However, this trade-off is alleviated when selection is combined with some proportion of EL in the herd. Such a synergistic effect between selection and management results from a complex interaction between the individual dynamic performance during EL and the herd turnover. Thereby, the innate capacity of goats to extend their lactation might be promoted to enhance herd resilience.PARIS-AgroParisTech Centre Paris (751052302) / SudocSudocFranceF
    corecore