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Abstract
Background: Resilience can be defined as the capacity of animals to cope with short-
term perturbations in their environment and return rapidly to their pre-challenge status.
In a perspective of precision livestock farming, it is key to create informative indica-
tors for general resilience and therefore incorporate this concept in breeding goals. In
the modern swine breeding industry, new technologies such as automatic feeding sys-
tem are increasingly common and can be used to capture useful data to monitor animal
phenotypes such as feed efficiency. This automatic and longitudinal data collection in-
tegrated with mathematical modelling has a great potential to determine accurate re-
silience indicators, for example by measuring the deviation from expected production
levels over a period of time.Results: Thiswork aimed at developing amodelling approach
for facilitating the quantification of pig resilience during the fattening period, from ap-
proximately 34 kg to 105 kg of body weight. A total of 13 093 pigs, belonging to three
different genetic lines were monitored (Pietrain, Pietrain NN and Duroc) since 2015, and
body weight measures registered (approximately 11.1 million of weightings) with auto-
matic feeding systems. We used the Gompertz model and linear interpolation on body
weight data to quantify individual deviations from expected production, thereby creat-
ing a resilience index (ABC). The estimated heritabilities of ABC are low but not zero
from 0.03 to 0.04 (+/- 0.01) depending on the breed. Conclusions: Our model-based
approach can be useful to quantify pig responses to perturbations using exclusively the
growth curves and should contribute to the genetic improvement of resilience of fatten-
ing pigs by providing a resilience index.
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Introduction 

Climate change and societal concerns (e.g., animal welfare and use of antibiotics) on livestock 
production result in important challenges for animal breeding. Alternatives to address these challenges 
include the implementation of strategies to select animals that can adapt to a changing environment and 
to promote a healthy environment for facilitating farm management (Berghof et al. 2018). In this context, 
the last decade has seen an enormous increase in interest in animal robustness to environmental effects. 
Friggens et al. define the robustness as the ability, in the face of environmental constraints, to carry on 
doing the various things that the animal needs to do to favour its future ability to reproduce (Friggens et 
al. 2017). Concomitantly, the concept of resilience has emerged in animal sciences encompassing not only 
the response of the individual to diseases challenge but also the individual’s response to other sources of 
stressors. Colditz and Hine defined resilience as the capacity of the animal to be minimally affected by 
disturbances or to rapidly return to the state pertained before exposure to a disturbance (Colditz & Hine,  
2016). Several definitions and resilience-associated concepts have been discussed in literature (Berghof et 
al. 2018), reflecting the interest of this concept in a broad range of scientific disciplines (Ge et al. 2016). 

In the era of big data collection on farms, the digitalization process will generate new knowledge in 
most of the relevant topics in swine production including nutrition, health management, reproduction, 
genetics, biosecurity, behavior, welfare, and pollutant emissions (Pineiro et al. 2019). Sensors (Neethirajan 
2020), such as commercially available automatic feeding systems (AFS), capture longitudinal data (feed 
intake -FI-, feeding time, daily visits and body weight -BW-). These data can be further exploited using the 
knowledge of animal requirements and physiology to develop new phenotypes increasing sustainability 
and efficiency of breeding. Such an exploitation calls for adequate mathematical tools. AFS allow pigs to 
feed ad libitum and recognize individual growing pigs via a radio frequency identification (RFID) 
transponder. The large number of automatic BW registers measured by AFS could generate knowledge for 
management decision-making. In particular, the detection of BW deviations from standard trajectories 
would generate useful insights on the status of animal with minimum effort if automated. 

Animal breeding is showing an increasing interest for resilience to be included as a trait in breeding 
goals. However, the incorporation of resilience in swine breeding goals is currently an uncommon practice. 
One of the main drawbacks that hinder the incorporation of resilience in breeding is the difficulty of 
providing quantitative resilience indicators (Friggens et al. 2017). Recent technological developments 
based on longitudinal data give new opportunities to define resilience indicators based on the difference 
between observed production and an individual’s potential production (although the definition of the 
individual potential is a challenging issue). Several studies have explored continuous recording of pig 
performance to study the impact of perturbations, including novel phenotypes related to disease resilience 
using daily FI (Mulder & Rashidi, 2017; Putz et al. 2019), and modelling approaches to detect potential 
perturbations as deviations of FI (Nguyen-Ba et al. 2020a). Modelling efforts to characterize the animal 
response to perturbations in dairy cattle have also been developed (Ben Abdelkrim et al. 2021). Our group 
has recently developed a modelling approach, for facilitating the quantification of piglet resilience to 
weaning (Revilla et al. 2019). In our previous work, we proposed a resilience indicator that has the potential 
to be used in elite breeding populations. Building upon our previous work, the aim of the present study 
was to develop a modelling methodology for quantifying an individual pig resilience indicator based on 
longitudinal BW measurements registered routinely by an AFS during the fattening period. Moreover, the 
genetics underlying this resilience indicator were analyzed in two of the most used commercial breeds to 
show the potential to improve resilience of swine livestock through inclusion of this indicator in breeding 
goals. 
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Methods 

Data source 

The pigs used in this study belonged to the Piétrain (Pie) and Duroc (Du) pure breeds. Piétrain is an 
European sire line breed, strongly selected for lean meat content during the last decades (Stratz et al. 
2014). The Du breed is also used as a terminal sire when fattening pigs are produced. The Du breed has 
both an excellent growth rate and high intramuscular fat (Suzuki et al. 2003). AXIOM Genetics have two 
different lines belonging to Piétrain breed namely Piétrain Français NN Axiom line (Pie NN) with pigs free 
from halothane-sensitivity and Piétrain Français Axiom line with animals positive to this gene. 

A total of 13 093 boars belonging to three different lines were used in this study: 5 841 and 5 032 
belonging to Pie and Pie NN line respectively, and 2 220 belonging to Du breed. 

Station conditions 

The boar testing station of the breeding company AXIOM Genetics (Azay-sur-Indre, France), built in 
2015, located in the Centre region in France housed the animals used in this study. A group of 336 piglets 
were introduced to the station every 3 weeks. AXIOM’s requirements for biosafety are applied: forward 
march, showers and change of clothes, cleaning and disinfection program, blood monitoring. The boars 
arrived, after weaning, from 7 different birth farms (5 farms for Pie, 1 farm for Pie NN and 1 farm for Du) 
to the herd when they were between 25 and 35 days of age (8 ± 3 kg BW). Birth farms are integrated into 
the AXIOM breeding scheme, comply with AXIOM’s biosafety and health requirements (monitoring, 
vaccination plan) and are negative for major diseases. For each batch, all pigs arrived within 1 successive 
week and were kept in the same pen of 14 animals. Each pen is made up of 14 male piglets from the same 
breed and from the same birth farm. The composition of the pens is never modified, with no reallocation. 
They were kept in air-filtered quarantine rooms (nursery) for 5 weeks, the time needed for seroconversion 
control and to validate there are not positive to major disease, such as porcine reproductive and respiratory 
syndrome (PRRS), brucellosis, swine influenza, etc. They were then raised in post-weaning rooms for 2 
weeks. The three lines are present in each group in the station and meet the same breeding conditions. 
Then they were transferred in fattening rooms when they were approximately between 70 and 80 days of 
age (34.4 kg). They were kept in fattening rooms for 65 to 77 days until the individual testing (weighing, 
ultrasonic backfat and muscle measurements) around 150 days of age (104 kg BW). Animals were kept in 
the same pen from arrival until slaughter. The station consisted in 2 nursery rooms, 2 post-weaning rooms 
and 10 fattening rooms with 12 identical pens each, housing a maximum of 14 pigs per pen, leading to a 
total capacity of 2 638 pig places. Only fattening rooms are equipped with AFS. Each pen had one water 
nipple available for the animals. One group, from the same week of introduction in the station, is divided 
in two fattening rooms (24 pens with 14 pigs). 

Automatic individual body weight data collection 

An AFS pig performance testing feeding station (Nedap N.V.; Groenlo, the Netherlands) was located in 
the front of each of the pen. The feeder was 0.7 m wide, and the total length was 1.69 m. The feeder 
included a feed trough and had no gates. The feeder only allows the entrance of one animal. The pig 
entering the feeder was individually identified via an electronic RFID transponder located in the ear. All 
animals were maintained under standard intensive rearing conditions and were fed individually ad libitum 
from the feeder with a standard diet non limiting in amino-acids. Briefly, the growing diet provided 9.75 
MJ/kg of net energy with 15% of crude protein and 0.9% of lysine. The boars were not castrated. 

Data collection started when animals were transferred in fattening pens and finished 1 week after 
individual testing. Animals were individually weighted the day of transfer (IW: initial weight) and the day 
of individual testing (WT). 

Manuel Revilla et al. 3

Peer Community Journal, Vol. 2 (2022), article e9 https://doi.org/10.24072/pcjournal.82

https://doi.org/10.24072/pcjournal.82


The data analyzed in this study used information registered at each visit in the AFS on individual pigs 
relating to identification number, date, location, duration of the visit, FI and BW. The dataset included 
boars raised at the station from September 2015 to July 2019. During that period, 65 batches arrived at 
the station (13 093 pigs in total). 

Data pre-treatment 

Datasets were processed separately for the three lines. Each dataset from the AFS was thoroughly 
assessed in order to validate the data, and identify important data gaps and quality issues using SAS (SAS 
Institute Inc 2002). The different datasets were analyzed independently but using the same procedure. 

In the raw data file, one record corresponded to one animal visit to an AFS. A first processing step 
consisted of eliminating the records without an RFID tag detected, and without a valid association between 
animal ID and RFID tag. 

As a second step of quality control for each visit, the weight was considered as null for records without 
BW record, with a duration of the feeder visit <5s (scale stabilization) and for weights measured during the 
6 first days of the fattening period that were out of a range between 0.7*IW and 1.3*IW. Indeed, during 
the first 6 days, the pigs are in the adaptation phase and the AFS stalls remain open. It is possible that two 
pigs try to enter in the AFS stall at the same time or that a pig puts a leg in the feeder causing an incorrect 
weight measurement. 

For the third control step, a quadratic regression of weight on age + age² for each animal was applied 
to eliminate aberrant weights. The ratio between the residual value and the fitted value was calculated for 
each visit of each animal. If the ratio was > 0.15, the measured weight was considered to be null. The ratio 
of 0.15 was selected by using a trial-and-error approach to find a compromise between the data cleaning 
and the number of data points to be kept for further analysis. This step was repeated a second time 
excluding the initially identified aberrant weights. Following this step, the visits of an animal during a day 
were aggregated in a single record. The weight of the day was estimated from the median of the non-null 
weights (WM) measured during the day's visits. If the number of non-null weights for the day was <3, the 
median of daily weights was considered to be null. 

The fourth control step consisted in analyzing all of data from each AFS within fattening group 
(AFS*Group) in order to detect inconsistencies linked to the AFS machine. A linear regression of WM on 
days (number of days since the beginning of measurements) was applied. The standard deviation of the 
residual value was calculated for each day for each AFS*Group. If more than 10% of the weights measured 
on AFS*Group were > 3 * standard deviation, then AFS*Group records have been removed from the data 
set. The objective was to rule out animals from AFS with a mechanical problem. Animals with less than 15 
AFS measurements in total or more than 10 consecutive days without measurements were removed from 
the analysis. We accepted that animals had missing weights during the fattening period. 

The total FI (TFI) during control period was calculated as the sum of FI for all visits during the control 
period. When a control day is missing (i.e.¸ due to a mechanic problem of AFS or loss of a RFID tag), the 
missing daily FI is estimated by using local regression, “proc loess” implement in SAS (SAS Institute Inc 
2002). 

Finally, for visualization purpose a kernel density estimation was performed to produce a smoothed 
color representation of a scatterplot by using the “smooothScatter” function implement in R (R Core Team 
2017). Multivariate kernel smoothing is described by Wand and Jone (Wand & Jone, 1994). 

Two-step mathematical model approach 

Our modelling approach comprises two steps. The first step looks at determining a theoretical 
(potential) growth curve of each animal. The second step looks at constructing the actual perturbed growth 

4 Manuel Revilla et al.

Peer Community Journal, Vol. 2 (2022), article e9 https://doi.org/10.24072/pcjournal.82

https://doi.org/10.24072/pcjournal.82


curve. The resulting two curves are the ingredients for further determination of an individual resilience 
indicator. 

Animal growth models aim at describing the pattern of growth over the animal’s lifetime, defining an 
upper limit to growth. In our study, we assumed that, under ideal conditions, animal growth follows the 
theoretical (potential) growth of the animal not experiencing any perturbation. The potential growth of 
each pig was modelled using the Gompertz equation (1) (Gompertz 1825), using the formulation described 
on Schulin-Zeuthen et al. (Schulin-Zeuthen et al. 2008). 

(1) 𝑊 = 𝑊0 𝑒𝑥𝑝 [
𝜇0

𝐷
(1 − 𝑒−𝐷∗(𝑡−𝑡0 )] 

Where 𝑊0 is the value of live weight 𝑊 (kg) at the initial time of the recordings 𝑡0), 𝜇0 (d−1) is the initial 
value of the specific growth rate at 𝑡0, the constant 𝐷 (d−1) is a growth rate coefficient that controls the 
slope of the growth rate (µ) curve and 𝑡 (days) is time since birth. All parameters are positive. In the 
remaining text, we will call the trajectories that resulted from this calibration as the unperturbed curve. 
The unperturbed growth model resulted in two parameters to be estimated, µ0 and D. As explained below 
in the model calibration section, we constructed the unperturbed curve such that the perturbed data 
cannot be above the unperturbed curve by a margin of 5%. The value of 5% was set in accordance with the 
accuracy provided by AFS. 

For our second modelling step, since the Gompertz equation is a monotonic function that does not 
account for possible decrease of BW due to perturbations, we construct a perturbed growth curve using 
the daily BW measurements registered routinely by the AFS. For missing records, values were estimated 
using the linear interpolation method implemented in the “interp1” function in Scilab (Enterprise S 2018). 
It should be noted that if high frequency data are available, the linear interpolation step is not needed. 

We further calculated the difference of the area under the curve between the perturbed curve and the 
unperturbed growth. The area under the curve was calculated using the trapezoidal rule implemented in 
the “inttrap” Scilab function. The resulting value was called Area Between Curves (ABC) index, and was 
considered as a proxy of resilience (the lower ABC the higher the resilience or an animal faced to low 
perturbation). For those non-normal distributed values, the ABC parameter results were normalised 
applying the log2 transformation. Visualization of the quartiles distribution of this parameter was 
performed with the ‘ggridges’ R package (R Core Team 2017). 

Finally, correlation analyses were performed to explore the relationships between growth model 
parameters to be estimated (µ0, D) and ABC. Pearson correlations were analyzed in R using the ‘cor’ 
function in the base package. 

Model calibration 

The parameters µ0, D of the Gompertz model for each animal were estimated by minimizing the 
normalized least square error with a penalized function (2): 

(2) 𝐽𝐸 = 𝜔 ∙ ∑ [
𝑊𝑖− 𝑊𝑑,𝑖

𝑊𝑑,𝑖
]

2
𝑛t

𝑖=1  

Where 𝑊𝑑 is the weight data (kg), 𝑊 the weight predicted by the model, and 𝑛t the total number of 
measurements. The parameter 𝜔 is a penalization factor that we constructed to constrain the unperturbed 
curve to envelope all experimental data. The penalization factor is defined as follows (3): 
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(3) 𝜔 = 10
𝑛r

𝑛t−1 

Where 𝑛t  is the number of measurements for each animal and 𝑛r is the number of records where the 
ratio between the residual (real BW – predicted weight) and the real BW was higher than 5%. 

Phenotypic swine production traits 

When the average weight of the group was approximately 100 kg, the individual testing was performed. 
Measurements made during the test were: weight (WT), average ultrasonic backfat thickness (BF: mean of 
3 measurements) and ultrasonic longissimus dorsi thickness (LD: 1 measurement). BF and LD were adjusted 
to 100 kg live weight (BF100 and LD100 respectively) by applying linear coefficients. These equations are 
based on those established by Jourdain et al. (Jourdain et al. 1989). 

The average daily gain (ADG), expressed in g/day, was calculated as the ratio between the BW gain 
(WG), difference between WT and IW, and number of days of control period. The feed conversion ratio 
(FCR) was calculated as the ratio between TFI during the fattening period and WG, expressed in kg/kg. 

The selection traits estimated in the 3 lines are BF100, LD100, ADG and FCR. 

Statistical analyses 

For each breed, the ABC, BF100, LD100, ADG and FCR traits were first analyzed separately with a linear 
mixed model (LMM). The global statistical model was defined as (4): 

(4) 𝑦 =  𝑋𝛽 + 𝑍𝜇 +  𝑒 

Where 𝑦 is the vector of phenotype measures for a trait, 𝛽 is the vector of fixed effects depending on 
the trait considered (Table S1). 𝑋 is the known matrix for fixed effects. 𝜇 is the vector of animal genetic 
random effects with ∼ N(0, A σ²u) where A is the pedigree-based relationship matrix. 𝑍 is the known design 
matrices for animal genetic effect. 𝑒 is a vector of residual random effects with e ~ N(0, I σ²e) where I is the 
identity matrix of appropriate size. 

Variance components (variance and covariance) were estimated using the REML method with ASReml 
3.0 (Gilmour et al. 2009) separately for each line. 

Heritability was calculated as the ratio of animal genetic variance to the phenotypic variance. Due to 
convergence issues, correlations between ABC and selection traits were estimated using two-trait analyses 
for lines Pie and Pie NN. Genetic correlations have not been estimated for Duroc due to insufficient data. 

For Pie, 24 generations of pedigree information comprising 57 459 animals from 1991 to 2019 were 
included in the analysis. For Pie NN, 24 generations of pedigree information comprising 16 137 animals 
from 1993 to 2019 were included in the analysis. For Du, 22 generations of pedigree information 
comprising 20 632 animals from 1995 to 2019 were included in the analysis. 

Results 

Data pre-treatment procedure 

From a total of 13 093 animals, more than 11.1 million measurements (1 measurement = 1 visit 
including BW and FI recording) were registered using the AFS. These numbers correspond to the raw 
dataset. We implemented a data pre-treatment procedure to provide high quality data for the modelling 
approach. This dataset was analyzed separately in three different data subsets belonging to Pie, Pie NN 
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and Du breed lines, and the same procedure was applied in each dataset. The comparison between the 
number of animals in the filtered data and the raw dataset showed a ratio of 0.93, 0.91 and 0.87, for Pie, 
Pie NN and Du lines, respectively. Regarding the number of AFS measurements, the ratios between the 
filtered and the raw dataset were 0.76 for Pie, 0.69 for Pie NN, and 0.77 for Du. Complete descriptive 
statistics for the dataset used in this study are shown in Table 1. 

Table 1. Descriptive statistics for the datasets used in this study 

Breed  Piétrain  Piétrain NN Duroc 

No. of pigs  5 841 5 032 2 220 

No. of Batch  63 65 62 

No. of pigs per batch 92.7 ± 39.5 77.4 ± 18.5 35.8 ± 12.3 

Initial average weight at fattening period (kg) 34.3 ± 5.9 34.5 ± 5.4 34.3 ± 5.5 

Initial average age at fattening period (days) 78.4 ± 3.3 77.6 ± 2.5 78.4 ± 3.0 

Average weight at the individual testing (kg) 105.8 ± 11 102.4 ± 10.2 105.6 ± 10.4 

Average age at the individual testing (days) 150.4 ± 4.1 147.2 ± 2.7 147.8 ± 3.0 

Raw data 
No. of AFS measurements 4 870 323 4 438 121 1 833 941 

No. of animals 5 841 5 032 2 220 

After cleaning procedure 

No. of AFS measurements 3 704 692 3 061 330 1 420 317 

Daily AFS visits 7.7 ± 3.6 8.4 ± 4 8.5 ± 5.4 

No. of animals 5 430 4 602 1 938 

 
The data analyzed in this study included information from a total of 11 970 boars, belonging to three 

of the most common lines used in swine industry. The final data set consisted of daily median BW records 
from 409 770, 337 964, and 140 170 Pie, Pie NN and Du measurements, respectively. 

A visual comparison of the AFS measurements dataset of Pie line before and after the data cleaning 
procedure is shown in Figure 1. Moreover, a graphic representation of Pie NN and Du lines filtering 
procedure is shown in Figure S1 and S2, respectively. The figure illustrates the proportion of measurement 
points discarded from the analysis before filtering (Figure 1: A1-A4; Figure S1: A1-A4 and Figure S2: A1-A4 
- Raw data) and after filtering (Figure 1: B1-B4; Figure S1: B1-B4 and Figure S2: B1-B4 - Filtered data), 
especially weights with a value close to zero. 
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Figure 1. Comparison of body weight density plots before (A) and after (B) applying data cleaning 
procedure in Pie line. In A1 and B1 plots each point represent the median of the individual daily body 
weight registered by the AFS during the pig fattening period. A2 and B2 are smoothed color density 

representations of a scatterplot. Shaded areas are constructed to illustrate the density of points falling 
into each part of the plot allowing for an intuitive visualization of very large datasets. A zoom in the 

density scatter plot before (A3-B3) and after (A4-B4) 100 days of individual age is illustrated. 

Growth curve modelling over pig fattening period 

To quantify the deviation of the unperturbed curve from the perturbed curve, we constructed the 
parameter ABC as a resilience indicator. Figure 2 displays the BW dynamic trajectories of two animals 
belonging to Pie line exhibiting different patterns. For an animal with a growth performance close to the 
unperturbed model (Figure 2A), ABC was 37 657. For an animal with high degree of perturbation (Figure 
2B), ABC was 493 007. The parameter ABC is a useful indicator of the degree of perturbation of an animal 
and allows comparison within a population. Table 2 summarizes the complete descriptive statistics of the 
model parameters. 

 

Figure 2. Comparison of the perturbed (blue line) and the unperturbed (red line) predicted response 
based on the body weight dynamic trajectories recorded during the whole fattening period. Circles 
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represent the median daily body weight measures of the individual pig. Two different animals belonging 
to Pie line are represented. 

Table 2. Descriptive statistics of the parameters for the growth curve modelling in the three pig lines 
analyzed 

Breed  Piétrain  Piétrain NN Duroc 

µ0 

Range 7.13 x 10-04 - 1.00 x 10-01 2.79 x 10-03 - 9.34 x 10-02 6.58 x 10-03 - 8.46 x 10-02 

Mean 2.62 x 10-02 2.59 x 10-02 2.78 x 10-02 

SD 1.95 x 10-02 6.19 x 10-03 8.40 x 10-03 

D 

Range 1.18 x 10-16 - 7.19 x 10-01 1.00 x 10-09 - 2.66 x 10-01 1.03 x 10-15 - 6.52 x 10-02 

Mean 1.16 x 10-02 1.64 x 10-02 1.65 x 10-02 

SD 2.22 x 10-02 8.83 x 10-03 7.85 x 10-03 

ABC parameter 

Min. 239 2 253 2 788 

1st quartile 26 244 27 489 31 518 

Median 33 564 35 804 44 069 

Mean 41 556 46 474 58 441 

3rd quartile 44 524 49 257 69 738 

Max 703 283 595 914 407 425 

µ0: individual growth rate (d-1); D: extent of the exponential decay of the growth (d-1); ABC: area between the perturbed 
and the unperturbed growth curves; SD: standard deviation. 

Furthermore, Figure 3 represents a visual comparison of the model parameters for the three analyzed 
lines. Parameter µ0 (Figure 3A) showed no significant differences when Pie and Pie NN lines were analyzed, 
nevertheless both of them were significantly different (p-value ≤ 0.001) compared with Du line. In the case 
of parameter D (Figure 3B) significant differences were found between Pie and Pie NN (p-value ≤ 0.001), 
and Pie and Du lines (p-value ≤ 0.05). 

 

Figure 3. Comparison of µ0, D and ABC statistics in the three pig lines analyzed. Parameter µ0 (A - 
initial growth rate value), parameter D (B – exponential rate of decay of growth rate), and parameter ABC 
(C – area between the perturbed and unperturbed growth curves) are represented. Red points show the 

average value of the model parameters for each line. The dotted line represents the global average of the 
parameter. Significant differences between groups are indicated as *p-value≤ 0.05, **p-value≤ 0.01, and 

***p-value≤ 0.001. 

Manuel Revilla et al. 9

Peer Community Journal, Vol. 2 (2022), article e9 https://doi.org/10.24072/pcjournal.82

https://doi.org/10.24072/pcjournal.82


For the parameter ABC (Figure 3C) significant differences were identified in all the comparisons 
performed (p-value ≤ 0.001). Despite the observed significant differences for the parameter ABC, their 
distribution between Pie and Pie NN lines were similar (Figure 4A and 4B), compared with the distribution 
observed for Du line (Figure 4C). This result is logical due to the close genetic origin of both lines. 

 

Figure 4. ABC parameter distribution in the three pig lines analyzed. ABC: area between the 
perturbed and the unperturbed growth curves. Colors represent quartiles information. 

 

Moreover, correlations between the model parameters of the three lines were analyzed (Table 3). The 
parameter µ0 showed positive significant correlations with parameter D in the three analyzed lines, 0.88 
for Pie, 0.81 for Du, and 0.62 for Pie NN. In the case of parameter µ0 and parameter ABC significant 
correlations were only identified in Du (0.37) and Pie NN lines (0.20). A similar pattern was also identified 
between parameter D and parameter ABC, being Du (0.30) and Pie NN (0.19) lines those that showed 
significant correlations. 

Table 3. Pearson’s correlation coefficients among the growth curve model parameters in the three 
pig lines analyzed 

Breed Piétrain  Piétrain NN Duroc 

Rµ0-D 0.88* 0.62* 0.81* 
Rµ0-ABC -0.01 0.20* 0.37* 
RD-ABC -0.01 0.19* 0.30* 

* P-value less than 0.05 were considered as significant. µ0: initial growth rate value, D: exponential 
rate of decay of growth rate, ABC: area between the perturbed and unperturbed growth curves. 

 

Estimating trait heritability and genetic correlations 

The heritability of the ABC parameter was analyzed (Table 4), ranging between 0.03 and 0.04. Both pig 
breeds had similar heritability. Phenotypic and genetic correlations were also performed between the ABC 
parameter and important swine production traits such as BF100, LD100, ADG and FCR (Table 5). Phenotypic 
correlations between ABC and production traits are close to 0 for both breeds, ranging from -0.09 to 0.10. 
Genetic correlations between ABC and production traits are low to moderate. In both breeds, the highest 
genetic correlation is between the resilience index and ADG, with values of 0.59 for Pie and 0.39 for Pie 
NN. 
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Table 4. Estimated heritabilities (h2) and corresponding standard errors (SE) of ABC parameter in Pie 
and Pie NN 

Breed Piétrain  Piétrain NN 

h2 (SE) 0.04 ± 0.01 0.03 ± 0.016 

 

Table 5. Estimates of heritabilities (diagonal) and of genetic (above diagonal) and phenotypic (below 
diagonal) correlations among ABC and four commercial selection traits in Pie and Pie NN 

Breed Piétrain   Piétrain NN 

Trait* ABC BF100 LD100 ADG FCR  ABC BF100 LD100 ADG FCR 

ABC 
0.04 

(0.01) 
0.19 

(0.16) 
-0.02 
(0.16) 

0.59 
(0.17) 

0.30 
(0.17) 

 0.03 
(0.016) 

-0.31 
(0.21) 

-0.24 
(0.23) 

0.39 
(0.23) 

0.37 
(0.20) 

BF100 
0.01 

(0.02) 
0.57 

(0.04) 
- - - 

 -0.03 
(0.02) 

0.42 
(0.04) 

- - - 

LD100 
-0.04 
(0.02) 

- 
0.46 

(0.04) 
- - 

 -0.03 
(0.02) 

- 
0.23 

(0.03) 
- - 

ADG 
-0.09 
(0.02) 

- - 
0.45 

(0.04) 
- 

 -0.06 
(0.01) 

- - 
0.33 

(0.04) 
- 

FCR 
0.10 

(0.02) 
- - - 

0.32 
(0.04) 

 0.06 
(0.02) 

- - - 
0.26 

(0.04) 

ABC: area between the perturbed and unperturbed growth curves; BF100: backfat thickness at 100kg; LD100: longissimus 
dorsi thickness at 100kg; ADG: average daily gain during control; FCR: feed conversion ratio. 

* Standard errors of correlations are given in parentheses. 

Discussion 

Although the performance of on-farm fattening pigs has improved over the last decades, phenotypic 
expression of certain traits remains below their genetic potential. In this context, obtaining reliable 
estimates of growth potential (unperturbed) and resilience over the fattening period in large populations 
is a challenge in actual swine breeding conditions. In a perspective of quantifying swine resilience and as 
an attempt to identify indicator traits for this complex trait, here we described a modelling approach based 
on pig BW registered routinely by AFS in station conditions: ad libitum feeding, high sanitary level, 
controlled temperature. Even if conditions are optimal, animals have to face to macro (heat stress, disease 
outbreak) and micro (social hierarchy, AFS mechanic problem) environmental perturbations that modify 
expression of growth potential. The modelling approach was tested on different swine breeds and their 
genetic contribution was analyzed in each one of them. Our modelling approach can further facilitate a 
real implementation at large scale in pig breeding systems. 

Pretreatment and validation of data registered by AFS 

A prerequisite for the linkage of animal data to precision livestock farming systems is through animal 
identification systems, such as RFID, that are automated and affordable both for the farmer and breeder 
(Banhazi et al. 2012). The development of AFS not only increases the convenience and control of the 
feeding process, it also allows a precision phenotyping. This development was made possible by the 
amount of data registered by these devices. These devices routinely record the individual identification, 
date, age, daily frequency of feeder visits, timing and duration of the visits, FI, and BW (Slader & Gregory, 
1988). However, unlocking the potential of new technology for precision livestock farming requires a deep 
understanding of how to manage the huge amount of data. Within this framework, data pre-treatment 
procedures to guarantee high quality data are essential as a first step to exploit the available information. 
Understanding the data and identifying the main data quality issues require deep data exploration (Figure 
1), because modelling approaches are strongly dependent on data quality. 
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Quantifying animals’ response to perturbations 

Developing models that are able to capture perturbations during the fattening period is a challenge in 
swine breeding industry. In recent years, the development of more frequent data acquisition and more 
sophisticated statistical methods have allowed modelling approaches to focus explicitly on perturbations. 
Revilla et al. (Revilla et al. 2019) focused on piglets BW change induced by the weaning event to propose 
an index to quantify animal robustness during this critical phase. Such a study is based on the modeling of 
growth, by using with the Gompertz–Makeham function, following an identified disturbance: the weaning. 
This was shown to correlate with a number of health-related parameters. Nguyen-Ba et al. (Nguyen-Ba et 
al. 2020a) developed a data analysis procedure to detect the impact of perturbations on FI in growing pigs. 
These two studies aim to analyze and quantify the consequences of an identified disturbance. In the 
context of our study, pigs can be subjected to different perturbations at different scales depending on the 
groups: temperature, social hierarchy, health situation. Our model approach does not include an explicit 
representation of the perturbations and thus differ from other approaches in which the number of 
perturbations and its duration are either fixed and known (Revilla et al. 2019; Nguyen-Ba et al. 2020b) or 
are to be estimated (Nguyen-Ba et al. 2020a; Ben Abdelkrim et al. 2021). In this study, we described a 
combined model approach to extract, in a two-step mathematical model approach, perturbed and 
unperturbed individual growth curves over the pig-fattening period. The Gompertz function (Gompertz 
1825) was chosen as it is suitable to describe the potential growth of pigs in non-limiting conditions 
(Wellock et al. 2004; Schulin-Zeuthen et al. 2008). It needs only two parameters, with biological meaning, 
that can be estimated simply from data (Wellock et al. 2004). The assumption was that the resulting model 
is an approximation of the theoretical growth rate of the animals not experiencing any perturbation 
(unperturbed model). The second step characterizes the perturbed growth curve that reflects the 
production permitted by the farm environment and captures different types of perturbations. With this 
two-step mathematical model and by comparing the unperturbed and perturbed model a very informative 
parameter was created, the ABC parameter, which gives an estimate of the degree of resilience (Revilla et 
al. 2019) over the pig-fattening period. Animals can be ranked according to the values of this parameter, 
with this ranking being an indication on the magnitude of the perturbation and animal resilience. In this 
case, an ABC value parameter closer to zero, means good animal resilience properties. With respect to 
interpretation, an ABC parameter of zero could mean either that the animal is perfectly resilient or that it 
did not experience any kind of environmental perturbation. In this study, an important hypothesis has been 
made, we consider that, on average, all animals are subjected to the same perturbations, and so the ABC 
parameter really indicates the resilience response. With this resilience indicator, animals can be ranked 
based not only on the measured production level, but also on their capacity to cope with perturbations. 
This kind of approach opens the perspective to use this information for breeding selection. Our hypothesis 
has however the limitation that we cannot guarantee that all animals are subjected equally to the 
perturbations. A key challenge is to extend the model to account for the specific perturbations that the 
individual animals face. Integration of observational data and precision livestock farming technologies are 
alternatives to explore in future work. For our case study, the interest of genetic analysis is to make it 
possible to estimate the individual resilience potential by estimating the impact of the environment in 
which the animal was fattened. 

Here Pie and Pie NN lines presented a lower average mean score of parameter ABC, -28.89% and -
20.48% respectively, compared with Du line (Table 2, Figure 3C). The objective of this comparison is not to 
conclude that one breed copes better than as other but to illustrate the potential to include a resilience 
indicator in the selection index. In this scenario, the Du line has a higher level of improvement in terms of 
selection response to resilience. 

Resilience trait in the breeding objective 

The response to societal concerns (e.g., antibiotics use, viability, etc) and the need to identify pigs that 
adapt to diverse and changing environmental conditions make essential that resilience traits, or their 
indexes, are included in the breeding objective (Rauw & Gomez-Raya, 2015). Two pre-requisites to the 
success of this approach are: a practical and accurate quantitative definition of this resilience trait, and a 
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positive selection response measured with the heritability estimation. The inclusion of heritabilities of 
functional traits and their feasibility in the breeding objective has been reported (Lawrence 2004). In this 
context, the genetic improvement of resilience traits, maximizing the bottom line instead of performance 
in a single trait, could be beneficial for the total system profitability (Knap 2008). Undoubtedly, directly 
including resilience traits in future selection criteria will depend on having quantifiable traits that can be 
recorded cost-effectively and reliably on the large number of animals that are necessary for a breeding 
program. The estimated heritabilities found in this study are low, ranging from 0.03 to 0.04, suggest that 
selection for this trait would result in a limited positive selection response. However, the favorable genetic 
correlations observed between resilience index (ABC), and ADG or FCR indicate that gains in both traits can 
be achieved at the same time, if resilience traits are properly included in the selection criteria. It means 
that an increase of the resilience index (= a decrease of ABC) is globally positively correlated to a genetic 
improvement of feed efficiency and FCR. Conversely, ABC is genetically correlated with growth (ADG), 
which could be interpreted as that an increase in the genetic potential for ADG increases the risk of a 
greater deviation of this potential in case of perturbation/stress, that is to say a loss of resilience. Although 
accuracies of estimates are low, the trends in these correlations must be taken into account in the choice 
of the weighting applied on each trait of the global index. One difficulty is to define what weighting to give 
to this resilience index in order to propose a breeding objective balanced with the production traits. 
Berghof et al. (Berghof et al. 2018) proposed a first approach of estimating an economic value of resilience 
index based on the reduction of time to manage alerts and observations. Beyond the economic value, this 
approach answers to environmental and societal concerns, that are difficult to quantify. 

Conclusions 

This study describes a method to quantify individual resilience during the pig-fattening period, by 
modelling routine BW measures registered by AFS. In addition, we have identified low to moderate genetic 
relationship between a resilience indicator and important phenotypic traits in swine production. The 
heritabilities found for the proposed resilience indicator are low but gives opportunity to be considered as 
a selection criterion and thus improve resilience. This first approach to building a resilience index, based 
on an analysis of the growth pattern could be enriched by the inclusion of observations of the environment 
(health observations, room temperature) and the concomitant analysis of feeding behavior (FI or feeding 
duration). 
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