41 research outputs found

    The stress tensor of a quark moving through N=4 thermal plasma

    Get PDF
    We develop the linear equations that describe graviton perturbations of AdS_5-Schwarzschild generated by a string trailing behind an external quark moving with constant velocity. Solving these equations allows us to evaluate the stress tensor in the boundary gauge theory. Components of the stress tensor exhibit directional structures in Fourier space at both large and small momentum. We comment on the possible relevance of our results to relativistic heavy ion collisions.Comment: 33 pages, 5 figures. v2: improved low K discussion; other minor improvement

    String creation in cosmologies with a varying dilaton

    Full text link
    FRW solutions of the string theory low-energy effective actions are described, yielding a dilaton which first decreases and then increases. We study string creation in these backgrounds and find an exponential divergence due to an initial space-like singularity. We conjecture that this singularity may be removed by the effects of back-reaction, leading to a solution which at early times is de Sitter space.Comment: 15 pages, latex, one figur

    Dissipation from a heavy quark moving through N=4 super-Yang-Mills plasma

    Get PDF
    Using AdS/CFT, we compute the Fourier space profile of generated by a heavy quark moving through a thermal plasma of strongly coupled N=4 super-Yang-Mills theory. We find evidence of a wake whose description includes gauge fields with large momenta. We comment on the possible relevance of our results to relativistic heavy ion collisions.Comment: 17 pages, 2 figures. v2: reference added, other minor improvements. v3: improved the phrasing describing directional structure

    Shock waves in strongly coupled plasmas

    Full text link
    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS5AdS_5 space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks we find the dual metric in a derivative expansion and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular we find that, when the velocity of the fluid relative to the shock approaches the speed of light v1v\to 1 the penetration depth \ell scales as (1v2)1/4\ell\sim (1-v^2)^{1/4}. We compare the results with second order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.Comment: 47 pages, 8 figures; v2:typos corrected, references adde

    Anisotropic Drag Force from 4D Kerr-AdS Black Holes

    Get PDF
    Using AdS/CFT we investigate the effect of angular-momentum-induced anisotropy on the instantaneous drag force of a heavy quark. The dual description is that of a string moving in the background of a Kerr-AdS black holes. The system exhibits the expected focussing of jets towards the impact parameter plane. We put forward that we can use the connection between this focussing behavior and the angular momentum induced pressure gradient to extrapolate the pressure gradient correction to the drag force that can be used for transverse elliptic flow in realistic RHIC. The result is recognizable as a relativistic pressure gradient force.Comment: 22 pages and 4 figure

    Quark-Gluon Plasma - New Frontiers

    Full text link
    As implied by organizers, this talk is not a conference summary but rather an outline of progress/challenges/``frontiers'' of the theory. Some fundamental questions addressed are: Why is sQGP such a good liquid? Do we understand (de)confinement and what do we know about ``magnetic'' objects creating it? Can we understand the AdS/CFT predictions, from the gauge theory side? Can they be tested experimentally? Can AdS/CFT duality help us understand rapid equilibration/entropy production? Can we work out a complete dynamical ``gravity dual'' to heavy ion collisions?Comment: final talk at Quark Matter 2008, Jaipur, India, Feb.200

    On the Beaming of Gluonic Fields at Strong Coupling

    Full text link
    We examine the conditions for beaming of the gluonic field sourced by a heavy quark in strongly-coupled conformal field theories, using the AdS/CFT correspondence. Previous works have found that, contrary to naive expectations, it is possible to set up collimated beams of gluonic radiation despite the strong coupling. We show that, on the gravity side of the correspondence, this follows directly (for arbitrary quark motion, and independently of any approximations) from the fact that the string dual to the quark remains unexpectedly close to the AdS boundary whenever the quark moves ultra-relativistically. We also work out the validity conditions for a related approximation scheme that proposed to explain the beaming effect though the formation of shock waves in the bulk fields emitted by the string. We find that these conditions are fulfilled in the case of ultra-relativistic uniform circular motion that motivated the proposal, but unfortunately do not hold for much more general quark trajectories.Comment: 1+33 pages, 2 figure

    Black Branes in a Box: Hydrodynamics, Stability, and Criticality

    Full text link
    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.Comment: 23 pages, 3 figures. v2: added comments on first-order phase transitio
    corecore