2,496 research outputs found

    Global control and fast solid-state donor electron spin quantum computing

    Get PDF
    We propose a scheme for quantum information processing based on donor electron spins in semiconductors, with an architecture complementary to the original Kane proposal. We show that a naive implementation of electron spin qubits provides only modest improvement over the Kane scheme, however through the introduction of global gate control we are able to take full advantage of the fast electron evolution timescales. We estimate that the latent clock speed is 100-1000 times that of the nuclear spin quantum computer with the ratio T2/TopsT_{2}/T_{ops} approaching the 10610^{6} level.Comment: 9 pages, 9 figure

    Can we always get the entanglement entropy from the Kadanoff-Baym equations? The case of the T-matrix approximation

    Full text link
    We study the time-dependent transmission of entanglement entropy through an out-of-equilibrium model interacting device in a quantum transport set-up. The dynamics is performed via the Kadanoff-Baym equations within many-body perturbation theory. The double occupancy <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >, needed to determine the entanglement entropy, is obtained from the equations of motion of the single-particle Green's function. A remarkable result of our calculations is that <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} > can become negative, thus not permitting to evaluate the entanglement entropy. This is a shortcoming of approximate, and yet conserving, many-body self-energies. Among the tested perturbation schemes, the TT-matrix approximation stands out for two reasons: it compares well to exact results in the low density regime and it always provides a non-negative <n^Rn^R>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >. For the second part of this statement, we give an analytical proof. Finally, the transmission of entanglement across the device is diminished by interactions but can be amplified by a current flowing through the system.Comment: 6 pages, 6 figure

    VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers

    Get PDF
    We present 14"\sim1-4" resolution Very Large Array (VLA) observations of four CH3_3OH J2J1J_2-J_1-EE 25~GHz transitions (JJ=3, 5, 8, 10) along with 1.3~cm continuum toward 20 regions of active massive star formation containing Extended Green Objects (EGOs), 14 of which we have previously studied with the VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al. 2009). Sixteen regions are detected in at least one 25~GHz line (JJ=5), with 13 of 16 exhibiting maser emission. In total, we report 34 new sites of CH3_3OH maser emission and ten new sites of thermal CH3_3OH emission, significantly increasing the number of 25~GHz Class I CH3_3OH masers observed at high angular resolution. We identify probable or likely maser counterparts at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data, providing further evidence that these masers trace similar physical conditions despite uncorrelated flux densities. The sites of thermal and maser emission of CH3_3OH are both predominantly associated with the 4.5 μ\mum emission from the EGO, and the presence of thermal CH3_3OH emission is accompanied by 1.3~cm continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm continuum emission, it is associated with the EGO in 16 cases (out of a total of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm continuum sources are associated with 6.7~GHz maser emission and likely trace deeply-embedded massive protostars

    Reuse as heuristic : from transmission to nurture in learning activity design

    Get PDF
    In recent years a combination of ever more flexible and sophisticated Web technologies and an explosion in the quantity of online content has sparked learning technologists around the world to pursue the promise of the 'reusable learning object' or RLO with the idea that RLOs could be reused in different educational contexts, thereby providing greater overall flexibility and return on investment. In 2002 the ACETS Project undertook a three-year study in the UK to investigate whether RLOs worked in practice and how the pursuit of reuse affected the teacher and their teaching. Teachers working in healthcare-related subjects in Higher and Further Education were asked to create an original learning design or activity from third-party digital resources and to reflect both on the process and its outcomes. The expectation was that teachers would be the ones selecting and reusing third-party materials. This paper describes how one of the ACETS exemplifiers reinterpreted this remit, challenged the anticipated transmissive model of learning, and instead, gave their students an opportunity to create their own original learning designs and learning activities from third-party digital resources. By describing the educational enhancements, the resulting heightened levels of critical thinking, and sensitivity to patient needs, 'reuse' will be shown to be an effective heuristic for student self-direction and professional development

    The Initial Conditions of Clustered Star Formation III. The Deuterium Fractionation of the Ophiuchus B2 Core

    Full text link
    We present N2D+ 3-2 (IRAM) and H2D+ 1_11 - 1_10 and N2H+ 4-3 (JCMT) maps of the small cluster-forming Ophiuchus B2 core in the nearby Ophiuchus molecular cloud. In conjunction with previously published N2H+ 1-0 observations, the N2D+ data reveal the deuterium fractionation in the high density gas across Oph B2. The average deuterium fractionation R_D = N(N2D+)/N(N2H+) ~ 0.03 over Oph B2, with several small scale R_D peaks and a maximum R_D = 0.1. The mean R_D is consistent with previous results in isolated starless and protostellar cores. The column density distributions of both H2D+ and N2D+ show no correlation with total H2 column density. We find, however, an anticorrelation in deuterium fractionation with proximity to the embedded protostars in Oph B2 to distances >= 0.04 pc. Destruction mechanisms for deuterated molecules require gas temperatures greater than those previously determined through NH3 observations of Oph B2 to proceed. We present temperatures calculated for the dense core gas through the equating of non-thermal line widths for molecules (i.e., N2D+ and H2D+) expected to trace the same core regions, but the observed complex line structures in B2 preclude finding a reasonable result in many locations. This method may, however, work well in isolated cores with less complicated velocity structures. Finally, we use R_D and the H2D+ column density across Oph B2 to set a lower limit on the ionization fraction across the core, finding a mean x_e, lim >= few x 10^{-8}. Our results show that care must be taken when using deuterated species as a probe of the physical conditions of dense gas in star-forming regions.Comment: ApJ accepte
    corecore