28 research outputs found

    Environmental Parameters Associated With Stable Fly (Diptera: Muscidae) Development at Hay Feeding Sites

    Get PDF
    Substrates composed of hay residues, dung, and urine accumulate around winter hay feeding sites in cattle pastures, providing developmental habitats for stable flies. The objective of this study was to relate physiochemical and microbial properties of these substrates to the presence or absence of stable fly larvae. Properties included pH, temperature, moisture, ammonium concentration, electrical conductivity, and numbers of coliform, fecal coliform, Escherichia coli, and Enterococcus bacteria. Each physiochemical sample was classified as a function of belonging to one of the three 2-m concentric zones radiating from the feeder as well as presence or absence of larvae. In total, 538 samples were collected from 13 sites during 2005–2011. Stable fly larvae were most likely to be found in moist, slightly alkaline substrates with high levels of ammonium and low temperature. The probability of larvae being present in a sample was the highest when the moisture content was 347% relative to dry weight and the average pH was 8.4. Larvae were recovered within all zones, with a nonsignificant, but slightly higher, percentage of samples containing larvae taken 2–4m from the center. All methods used to enumerate bacteria, except total coliform, indicated decreasing concentrations in hay bale residue throughout the summer. In addition to the environmental parameters, cumulative degree day 10˚C had a significant effect on the probability of observing stable fly larvae in a sample, indicating that unidentified seasonal effects also influenced immature stable fly populations

    Environmental Parameters Associated With Stable Fly (Diptera: Muscidae) Development at Hay Feeding Sites

    Get PDF
    Substrates composed of hay residues, dung, and urine accumulate around winter hay feeding sites in cattle pastures, providing developmental habitats for stable flies. The objective of this study was to relate physiochemical and microbial properties of these substrates to the presence or absence of stable fly larvae. Properties included pH, temperature, moisture, ammonium concentration, electrical conductivity, and numbers of coliform, fecal coliform, Escherichia coli, and Enterococcus bacteria. Each physiochemical sample was classified as a function of belonging to one of the three 2-m concentric zones radiating from the feeder as well as presence or absence of larvae. In total, 538 samples were collected from 13 sites during 2005–2011. Stable fly larvae were most likely to be found in moist, slightly alkaline substrates with high levels of ammonium and low temperature. The probability of larvae being present in a sample was the highest when the moisture content was 347% relative to dry weight and the average pH was 8.4. Larvae were recovered within all zones, with a nonsignificant, but slightly higher, percentage of samples containing larvae taken 2–4m from the center. All methods used to enumerate bacteria, except total coliform, indicated decreasing concentrations in hay bale residue throughout the summer. In addition to the environmental parameters, cumulative degree day 10˚C had a significant effect on the probability of observing stable fly larvae in a sample, indicating that unidentified seasonal effects also influenced immature stable fly populations

    Microbial Communities Associated With Stable Fly (Diptera: Muscidae) Larvae and Their Developmental Substrates

    Get PDF
    Bacteria are essential for stable fly (Stomoxys calcitrans (L.)) larval survival and development, but little is known about the innate microbial communities of stable flies, and it is not known if their varied dietary substrates influence their gut microbial communities. This investigation utilized 454 sequencing of 16S and 18S amplicons to characterize and compare the bacterial and eukaryotic microbial communities in stable fly larvae and their developmental substrates. The microbial community of the third-instar stable fly larvae is unambiguously distinct from the microbial community of the supporting substrate, with bacterial communities from larvae reared on different substrates more similar to each other than to the communities from their individual supporting substrates. Bacterial genera that were more abundant proportionally in larvae compared to their substrates were Erysipelothrix, Dysgonomonas, Ignatzschineria (Gammaproteobacteria), and Campylobacter (Epsilonprotobacteria). The alphaproteobacteria Devosia, Brevundimonas, Sphingopyxix, and Paracoccus were more abundant proportionally in field substrates compared to their larvae. The main genera responsible for differences between the positive and negative field substrates were Dysgonomonas and Proteiniphilum. In contrast to Dysgonomonas, Proteiniphilum was more abundant in substrate than in the larvae. A large number of sequences were assigned to an unclassified protest of the superphylum Alveolata in larvae and their substrate. Microscopy validated these findings and a previously undescribed gregarine (phylum Apicomplexa, class Conoidasida) was identified in stable fly larvae and adults

    Better than DEET Repellent Compounds Derived from Coconut Oil

    Get PDF
    Hematophagous arthropods are capable of transmitting human and animal pathogens worldwide. Vector-borne diseases account for 17% of all infectious diseases resulting in 700,000 human deaths annually. Repellents are a primary tool for reducing the impact of biting arthropods on humans and animals. N,N-Diethyl-meta-toluamide (DEET), the most effective and long-lasting repellent currently available commercially, has long been considered the gold standard in insect repellents, but with reported human health issues, particularly for infants and pregnant women. In the present study, we report fatty acids derived from coconut oil which are novel, inexpensive and highly efficacious repellant compounds. These coconut fatty acids are active against a broad array of blood-sucking arthropods including biting flies, ticks, bed bugs and mosquitoes. The medium-chain length fatty acids from C8:0 to C12:0 were found to exhibit the predominant repellent activity. In laboratory bioassays, these fatty acids repelled biting flies and bed bugs for two weeks after application, and ticks for one week. Repellency was stronger and with longer residual activity than that of DEET. In addition, repellency was also found against mosquitoes. An aqueous starch-based formulation containing natural coconut fatty acids was also prepared and shown to protect pastured cattle from biting flies up to 96-hours in the hot summer, which, to our knowledge, is the longest protection provided by a natural repellent product studied to date

    De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis

    Get PDF
    Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∼4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology

    Reproductive Potential of Stable Flies (Diptera: Muscidae) Fed Cattle, Chicken, or Horse Blood

    Get PDF
    Reproductive potential was assessed for stable fly cohorts fed cattle, chicken, or horse blood. Flies provided chicken blood oviposited20%moreeggs per day than did those fed cattle or horse blood. However, flies provided cattle or horse blood were fecund 50% longer. When both egg viability and number of eggs produced were considered, lifetime reproductive potential was almost twice as high for flies fed cattle or chicken blood than for flies fed horse blood. Maternal investment, which took egg production and volume into account, was higher in cohorts fed cattle blood (70 mm3) when compared with the other treatments (chicken = 54 mm3, horse = 55 mm3). This is the first report of stable flies producing viable eggs after feeding on bird blood. Results from this study in addition to field observations indicate that stable fly interactions with birds may be limited to relatively low risk scenarios
    corecore