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Abstract

Bacteria are essential for stable fly (Stomoxys calcitrans (L.)) larval survival and development, but little is known

about the innate microbial communities of stable flies, and it is not known if their varied dietary substrates influ-

ence their gut microbial communities. This investigation utilized 454 sequencing of 16S and 18S amplicons to

characterize and compare the bacterial and eukaryotic microbial communities in stable fly larvae and their de-

velopmental substrates. The microbial community of the third-instar stable fly larvae is unambiguously distinct

from the microbial community of the supporting substrate, with bacterial communities from larvae reared on

different substrates more similar to each other than to the communities from their individual supporting

substrates. Bacterial genera that were more abundant proportionally in larvae compared to their substrates

were Erysipelothrix, Dysgonomonas, Ignatzschineria (Gammaproteobacteria), and Campylobacter

(Epsilonprotobacteria). The alphaproteobacteria Devosia, Brevundimonas, Sphingopyxix, and Paracoccus were

more abundant proportionally in field substrates compared to their larvae. The main genera responsible for dif-

ferences between the positive and negative field substrates were Dysgonomonas and Proteiniphilum. In con-

trast to Dysgonomonas, Proteiniphilum was more abundant in substrate than in the larvae. A large number of

sequences were assigned to an unclassified protest of the superphylum Alveolata in larvae and their substrate.

Microscopy validated these findings and a previously undescribed gregarine (phylum Apicomplexa, class

Conoidasida) was identified in stable fly larvae and adults.

Key words: Stomoxys calcitrans, bacteria, fungi, gregarine, 454 sequencing

Adult stable flies are serious hematophagous pests of pasture and

feedlot cattle. Their painful bites distress the animals, prompting

host defensive behaviors such as bunching and wading in water,

causing concerns related to animal welfare, water quality, and re-

duced weight gains (Campbell et al. 1987, Taylor et al. 2012).

The most effective method of stable fly control is identifying and

removing substrates that support development. Providing guidance to

farmers on eliminating stable fly larval habitat is difficult, in part, be-

cause the environmental conditions that foster stable fly growth and

development have not been established. Stable flies develop in a diverse

array of substrates that generally include moist, decaying vegetation

such as animal bedding, silage, spilled hay, lawn clippings, and various

crop residues (i.e., peanut, pineapple, corn, and sugar cane; Ware

1966, Williams et al. 1980, Talley et al. 2009, Schmidtmann 1991,

Solorzano et al. 2015). Physiochemical measurements have provided

some insight into why stable flies are able to develop in such diverse

substrates, but it is evident that microbes colonizing the substrate also

have impacts (Giles et al. 2008, Wienhold and Taylor 2012, Friesen

et al. 2016b). Bacteria are essential for stable fly larval survival and de-

velopment (Lysyk et al. 1999, Romero et al. 2006, Albuquerque and

Zurek 2014). However, little is known about the innate microbial

communities of these flies, and it is not known to what extent dietary

substrate influences the gut microbial communities of these insects.

To explore these questions, this study was designed to examine

the microbial communities of larvae and their supporting substrates.

The objectives of this investigation were to 1.) Characterize the mi-

crobial communities of calf bedding, a common source of stable fly

development, as well as artificial media used to maintain a stable fly

colony, and 2.) Compare the microbial communities of stable fly lar-

vae with their developmental substrates.

Materials and Methods

Collection of Substrate and Larvae
The main objectives of this investigation were to characterize and

compare the microbial communities of third-instar stable fly larvae
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with their developmental substrates. To do this, larvae and substrate

were collected under three conditions:

Field Substrate, Field-Collected Larvae

Third-instar larvae were collected from calf bedding at a local dairy

(Firth, NE) in late July 2013. The calf pen in which the bedding was

located housed six calves<1 yr old and measured �6.3 m long by 3

m wide. The bedding consisted of corn stalks, manure, urine, and

sand and had been in use for 3 wk before being sampled. Substrate

from the upper 10 cm was collected in a 50-ml conical screw cap

tube, all larvae and pupae removed, and frozen at �80 �C for 2 wk

until processed for DNA extraction. Approximately 2 h elapsed be-

tween sample collection and freezing. Ten third-instar larvae were

also collected from the bedding, rinsed in sterile distilled water, and

frozen at �80 �C for 2 wk (subsequently referred to as “natural

larvae”).

In natural substrates, it is common to find aggregates of stable

fly larvae in some locations and none in others. The cause of this be-

havior is unknown. Therefore, a subobjective was to compare the

microbial communities in substrates where stable fly larvae were ab-

sent and present. From the same pen, a sample of calf bedding in

which larvae were absent and a sample in which they were present

(subsequently referred to as “natural-positive” and “natural-nega-

tive,” respectively) were used for DNA extraction and to analyze

physiochemical parameters including water content, electrical con-

ductivity (EC), nitrate and ammonium concentrations, and total car-

bon (C) and nitrogen (N). Moisture was calculated by weighing 50 g

of calf bedding, drying at 100 �C for 48 h, and weighing the dried

sample. Moisture of the sample was calculated relative to dry

weight, Moist¼ (Wwet�Wdry)/Wdry (CIMMYT 2013). Laboratory

EC1:1 was determined in 1:1 water:substrate slurry using a conduc-

tivity meter for EC1:1 and a glass electrode for pH (Smith and Doran

1996). Nitrate-N was determined using the Cd reduction method

(Mulvaney 1996). Inorganic N in 1 M KCl extracts was measured col-

orimetrically using a flow injection ion analyzer (Zellweger Analytics,

Lachat Instruments Div., Milwaukee, WI). Total C (g kg�1) and total

N (mg kg�1) were measured by dry combustion (EA1112 Flash NC

Elemental analyzer, Thermo Finnegan Scientific Inc., Waltham, MA)

using air-dried, ground samples.

Field Substrate, Colony Larvae

Calf bedding was collected from the same source and on the same

date previously described and brought into the laboratory where it

was held at room temperature (�25 �C) for 2 wk, or until the bed-

ding was �5 wk old. During this time, larvae that were naturally

present in the substrate emerged and were removed. Stable fly eggs

were obtained from a laboratory colony initiated in 2008 and main-

tained at the United States Department of Agriculture, Agricultural

Research Service, Agroecosystem Management Research Unit,

Lincoln, NE, following the methods of Berkebile et al. 2009. Four

hours after oviposition, eggs were collected, rinsed, and inoculated

into the natural substrate. Larvae developed at room temperature

(�25 �C) and, prior to the wandering stage, 10 third-instars were

collected, rinsed in sterile distilled water, and frozen at �80 �C until

further processing (subsequently referred to as “field larvae”). At

this time, a sample of the substrate was also collected and frozen

(subsequently referred to as “field substrate”).

Lab Substrate, Colony Larvae

Stable fly eggs were collected from the same stable fly colony de-

scribed previously and were inoculated into larval media consisting

of wheat bran, fish meal, wood chips, and water (Berkebile et al.

2009). Larvae developed at room temperature (�25 �C). Substrate

and third-instars were collected prior to the wandering stage and

frozen at �80 �C (subsequently referred to as “laboratory substrate”

and “laboratory larvae”).

DNA Extraction, Purification, Amplification, and

Sequencing
DNA extraction was performed using the MoBio PowerSoil kit

(Carlsbad, CA) according to the manufacturer’s guidelines.

Approximately 0.25 g of substrate was homogenized and used for

DNA extraction. Each larval sample for DNA isolation consisted of

a pool of 10 larvae. The bacterial 16S ribosomal RNA gene variable

regions 1–3 (Dowd et al. 2011) and the 18S fungal small subunit

gene (Handl et al. 2011) from each sample were amplified and the

product was purified using Agencourt Ampure beads (Agencourt

Bioscience Corporation, MA). HotStarTaq Plus Master Mix

(Qiagen, Valencia, CA) was used in a single-step 30 cycle reaction

consisting of: 94 �C for 3 min; 28 cycles of 94 �C for 30 s, 53 �C for

40 s, and 72 �C for 60 s; 72 �C for 5 min. Both 16S and 18S rRNA

PCRs were performed on negative controls to check for contami-

nants. No products were obtained, suggesting that the products ob-

tained from the insect samples were largely contaminant-free.

Primers and custom barcodes are listed in Table 1 (Dowd et al.

2008). The 16S and 18S amplicons were barcoded and combined

into two separate library pools, one containing the 16S libraries and

the second containing the 18S libraries. The 16S and 18S amplicon

pools were each sequenced on 1=4 plate using a Roche 454 FLX tita-

nium instrument following the manufacturer’s guidelines.

rRNA Analysis
Both 16S and 18S sequences were assigned to operational taxo-

nomic units (OTUs) using Mothur v.1.35.1 (Schloss et al. 2011).

Samples were demultiplexed, barcodes and primer sequences were

removed, and low quality reads were filtered from the dataset.

Flowgrams were trimmed to 450-550 bases and denoised using the

shhh.flows command in MOTHUR, which is mothur’s implementa-

tion of the PyroNoise algorithm (Quince et al. 2009). Reads were

dereplicated using the unique.seqs command and the pre.cluster

command was used to remove reads that differed by 2 bases or less

from the dataset, which are likely attributed to pyrosequencing er-

rors. Chimeric reads were identified using the MOTHUR implemen-

tation of UCHIME using the reference=’self’ option. 16S and 18S

reads were aligned to the 16S SILVA nr_v123 reference and 18S

Table 1. Primers and barcodes used for 454-pyrosequencing of

third-instar stable fly larvae and their developmental substrates

Function Sequence (50-30)

16S forward primer (27F) AGRGTTTGATCMTGGCTCAG

16S reverse primer (519R) GTNTTACNGCGGCKGCTG

Eukaryotic 18S forward primer TGGAGGGCAAGTCTGGTG

Eukaryotic 18S reverse primer TCGGCATAGTTTATGGTTAAG

454 adapter AGRGTTTGATCMTGGCTCAG

Barcode 1 lab substrate ACTGCAGT

Barcode 2 field substrate ACTGCTCT

Barcode 3 lab larvae ACTGGACT

Barcode 4 field larvae ACTGGAGA

Barcode 5 natural positive ACTGGTCA

Barcode 6 natural negative ACTGGTGT

Barcode 7 natural larvae ACTGTCAG
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Silva nr_V119 reference, respectively. Reads were assigned to OTUs

at 97% similarity using the average neighbor algorithm, which uses

a weighted average of the distances between two sequences to deter-

mine whether or not they belong to the same OUT. Further, 16S and

18S OTUs were taxonomically classified using the wang approach

of the classify.seqs command in mothur, which calculates the proba-

bility that the amplicon belongs to each taxonomic rank (phylum,

class, order, etc) by its kmer composition and assigns the amplicon

to the taxonomy with the highest probability. 16S sequences were

taxonomically classified by comparison to Ribosomal Database

Project (using trainset9_032012, version 9) (Wang et al. 2007) while

fungal 18S OTUs were classified by a BLASTN comparison to the

non-redundant nucleotide database. For 18S, the top 100 highest

scoring BLAST alignments with evalues�1E-08 were retained and

used for taxonomic classification. An 80% confidence value was re-

quired for all taxonomic classifications and mitochondrial 16S

rRNA and genomic 18S rRNA sequences derived from host were

eliminated from the analysis. Libraries from each community were

normalized by randomly subsampling (without replacement) the

same number of amplicon reads (n¼3,216) to prevent biases from

sequencing yields from driving similarities and differences between

communities. In order to assess shared species richness and diversity,

mothur tools were used to generate rank abundance plots, Chao,

Ace, Jacknife -richness, and Shannon-diversity calculations.

Distance matrices and heatmaps were generated in R (version 3.0.2)

using the vegan, cluster, and gplot packages (Oksanen 2015,

Maechler et al. 2016). NMDS analyses were performed using the

“metaMDS” command in the “vegan package” of the R statistical

computing environment (R Core Team 2016).

Availability of Sequencing Data
Raw 454 sff files containing the 16S and 18S amplicons used in this

study have been deposited in NCBI’s Sequence Read Archive (SRA)

under the accession numbers SRX2071047-SRX2071060 associated

with BioProject PRJNA341400.

Microscopy
Images of microflora in stable fly larvae and adults were taken with

phase-contrast, confocal, and scanning electron microscopy. Third-

instar larvae collected from natural-positive substrate were rinsed in

sterile, distilled water and dissected in sterile phosphate-buffered sa-

line (PBS). The digestive system was removed and viewed under

phase-contrast and confocal microscopy. Smear mounts of the diges-

tive tract were viewed under a 40X phase-contrast 40/0.65, 160/

0.17, Ph3 DL objective on a Nikon Optiphot Phase Contrast micro-

scope (Nikon Corp., Tokyo, Japan). Images were taken with a

Nikon D7000 digital camera using a VariMag DSLR adaptor

(VariMag, Cape Coral, FL). Smear mounts were also viewed with

an Olympus FV500 inverted (Olympus IX-81) confocal microscope

(Olympus Corp., Tokyo, Japan). Adult female stable flies were aspi-

rated from resting sites, rinsed in sterile distilled water, dissected in

PBS, and the digestive system removed and placed in a 1.5-ml centri-

fuge tube containing 2.5% glutaraldehyde for at least 24 h at 5 �C.

The digestive system was then serially dehydrated in 30%, 50%,

70%, 80%, and 90% ethanol for 15 min/step, followed by two

30 min submersions in 100% ethanol. Specimens were mounted on

aluminum studs and sputter coated with gold for examination with

a field-emission (Hitachi S-4700) scanning electron microscope

(Hitachi Corp., Tokyo, Japan). Confocal and scanning electron im-

ages were taken at the Microscopy Core Research Facility,

University of Nebraska, Lincoln.

Results

Physiochemical Profile of Natural Substrate
The calf bedding was a moist, slightly alkaline substrate with C:N

ratios between 17:1 and 20:1 and relatively high concentrations of

ammonium (Table 2).

Composition of Bacterial Communities Associated With

Larvae and Substrates
A total of 78,418 high-quality reads from seven stable fly larvae and

substrate samples were analyzed using the V1–V3 regions of the 16S

rRNA genes (Table 3). After removing low quality reads, denoising

flowgrams, and removing redundant reads, 9,410 unique sequences

remained. Of these, 2,207 were flagged as potential chimeras and

were removed from the analysis while 66 OTUs were eliminated

from the analysis because they were not of microbial origin.

A total of 1,431 bacterial OTUs were detected across all stable

fly and food substrate samples, ranging from a low of 51 OTUs in

the natural larvae sample to 725 OTUs in the field substrate. Among

all of the samples analyzed, 44% of the reads were derived from the

top 10 most abundant OTUs, with 90% of the reads originating

from 305 OTUs. Considering larvae and substrates as groups, 75%

of the reads derived from larvae were represented by the top 10

OTUs and 90% of the reads were derived from 30 OTUs. In con-

trast, only 40% of the reads derived from substrates were repre-

sented by the top 10 OTUs, with 270 OTUs required for 90%

sequence coverage. Rank abundance plots (Fig. 1) indicated that the

bacterial communities from substrates were more diverse in compar-

ison to the larvae, particularly for the natural substrates. The higher

diversity of the substrate communities compared to those derived

from larvae was confirmed using Chao, Ace, Jackknife and Simpson

indices (Table 4). In addition, the Shannon index, which acts as a

proxy for community diversity, was higher in the substrates com-

pared to the larvae while the Simpson index, which represents the

probability that two individuals selected randomly from the commu-

nity belong to the same OTU, was significantly lower in the sub-

strates (Table 4). These findings suggest that the communities

sampled from the substrates are more complex in comparison to

those associated with the larvae.

There were eight OTUs that were found in common to all three

larval samples. Of those, five OTUs were found exclusively

Table 2. Physiochemical properties of calf bedding with (positive)

and without (negative) stable fly larvae

Larvae Moisture EC

(mS)

pH NO3

(mg/g)

NH4

(mg/g)

N

(%)

C

(%)

C:N

Positive 3.43 3.58 8.14 18.41 1116.01 1.62 31.89 19.7:1

Negative 2.91 7.72 7.98 42.72 3166.79 2.05 35.63 17.4:1

Table 3. Bacterial raw and filtered read counts from stable fly lar-

vae and their developmental substrates

Sample Raw reads Filtered reads

Field larvae 9,470 8,055

Field substrate 12,906 14,313

Laboratory larvae 7,334 4,562

Laboratory substrate 22,105 19,051

Natural larvae 17,089 12,294

Natural substrate-positive 3,843 3,216

Natural substrate-negative 19,440 16,990
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associated with the larvae and were not detected in the substrates.

There were also eight OTUs common to all three substrate samples,

with seven being found exclusively in the substrate (Table 5). The

larval communities contained a lower number of singleton OTUs

(defined as OTUs represented by a single read), compared to the

substrate communities. Of the 1,431 total OTUs detected across all

samples 603 (42%) were singletons, with 55 (4%) of the singletons

derived from the larval communities compared to 548 (38%) de-

rived from the substrates, suggesting that the microbial community

of the substrates is more rich in comparison to larval communities.

The natural-positive substrate had 326 OTUs with 146/326 (45%)

occurring as singletons, while the natural-negative substrate had

379 OTUs with 98/379 (25%) singletons.

At the phylum level, the larval communities had higher relative

abundances of reads assigned to Firmicutes and lower relative abun-

dances of Bacteroidetes compared to their respective feeding sub-

strates (Fig. 2). At the class level, the larval communities were

represented by 21 different bacterial classes, while the substrate

communities were represented by 33 bacterial classes. Field, labora-

tory, and natural larvae were represented by 18, 15, and 17 bacterial

classes, respectively. Unlike the larval communities that were com-

prised of similar numbers of bacterial classes, the numbers of

bacterial classes detected across each substrate were more variable

with 29, 10, 14, and 17 classes detected in field, laboratory, natural-

positive, and natural-negative substrates, respectively. The commu-

nity from the artificial laboratory media was the least taxonomically

diverse, with only 10 classes represented in the subsample, while the

community from the field substrate was the most taxonomically di-

verse with 29 classes represented. For the larval communities, 94%

of the sequences are represented in the top 10 classes (as measured

by abundance). For the substrates, 99% of the sequences are repre-

sented in the top 10 classes.

Taking a closer look at the taxonomic assignments within the

Firmicutes, it is clear that this phylum is overrepresented in the lar-

val communities compared to the substrate communities.

Specifically, the most dominant class within this phylum was

Erysipelotricha, represented by 10 OTUs (Fig. 3), with the primary

contributors being four OTUs assigned to the genus Erysipelothrix.

Within the phylum Bacteroidetes, the classes Bacteroidia,

Flavobacteria, and Sphingobacteria account for the majority of the

differences observed between the larvae and substrates. At the

deeper taxonomic levels, the only genus consistently higher in abun-

dance (3 OTUs) in the larval communities compared to substrates is

Dysgonomonas (Fig. 3). In addition to differences between larval

Fig. 1. 16S rank abundance plots of stable fly larvae and their developmental substrates.

Table 4. Bacterial richness and diversity in stable fly larvae and their developmental substrates

Measure Field larvae Field substrate Laboratory

larvae

Laboratory

substrate

Natural

larvae

Natural

substrate positive

Natural

substrate negative

OTUs 115 725 81 112 52 380 326

Chao 142 (127–177) 1197 (1085–1344) 100 (87–143) 196 (151–291) 55 (53–67) 458 (427–510) 539 (457–641)

Ace 149 (133–1181) 1689 (1556–1844) 92 (85–111) 209 (175–259) 57 (53–69) 449 (426–485) 671 (600–761)

Jackknife 150 (133––167) 1489 (1335–1643) 100 (87–112) 233 (180–286) 61 (53–69) 484 (454–514) 764 (589–940)

Shannon 2.62 (2.54–2.67) 4.96 (4.88–5.04) 2.79 (2.73–2.82) 2.07 (2.01–2.13) 1.97 (1.93–2.02) 4.98 (4.93–5.03) 4.23 (4.17–4.30)

Simpson 0.19 (0.18–0.20) 0.06 (0.05–0.06) 0.12 (0.11–0.12) 0.24 (0.23–0.25) 0.22 (0.21–0.22) 0.014 (0.013–0.015) 0.038 (0.035–0.041)

Parentheticals represent the upper and lower boundaries of the 95% confidence intervals. Chao, Ace, and Jackknife estimate the number of OTUs truly present

in each community while the Simpson’s index represents the probability that two individuals selected at random belong to the same OTU while the Shannon index

quantifies entropy, or the degree of difficulty in predicting which OTU an individual belongs to.
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and substrate communities, there are also differences in the abun-

dance of Bacteroides between natural-positive and natural-negative

substrates. Specifically, Dysgonomonas and Proteiniphilum are

more abundant in the natural-positive compared to the natural-

negative substrate.

Class-level taxonomic assignments within phylum

Proteobacteria revealed that larval communities have higher propor-

tions of gammaproteobacteria compared to their respective sub-

strates and a lower proportion of alphaproteobacteria (Fig. 3). The

field and natural larvae also had small numbers of reads derived

from epsilonproteobacteria that were not observed in their corre-

sponding substrate. Within the gammaprotobacteria, the primary

difference between the larval and the substrate communities could

be attributed to assignments in the genus Ignatzschineria. Larval

communities had a combined total of 1,375 reads derived from the

genus Ignatzschinera, and substrates had a combined total of only

12 reads assigned to this genus. Members of this genus were absent

in both the field and natural-negative substrates. The lower propor-

tion of alphaproteobacteria in larval communities is primarily due

to sequences derived from field and natural larvae. For example, of

the four genera that were more frequently found in the substrates

compared to the larval communities, Paracoccus and Sphingopyxix

were found exclusively in the field and natural substrates, Devosia

was found primarily in both the field and natural substrates, with a

single read detected in the field larvae, and Brevundimonas was

found in all three substrates, with only seven reads assigned to this

Table 5. 16S OTUs in all three larval communities or all three substrate communities

OTU Phylum Genus Total sequences No. larvae w/OTU No. substrates w/OTU

14a Proteobacteria (!) Pseudomonas 769 3 0

83a Proteobacteria (b) Unclassified Comamonas 118 3 0

112a Sphingobacteria Lacibacter 64 3 0

63a Proteobacteria (b) Castellaniella 49 3 0

85a Firmicutes Unclassified Ruminococcaceae 8 3 0

15 Planctomycetes Blastopirellula 379 3 1

1 Actinobacteria Arthrobacter 2592 3 1

3 Bacteroidetes Unclassified Flavobacteriaceae 1383 3 2

7 Firmicutes Unclassifed Clostridiales 280 1 3

5a Proteobacteria (!) Ignatzschineria 628 0 3

19a Bacteroidetes Unclassifed Bacteroidetes 181 0 3

13a Proteobacteria (!) Unclassifed Xanthomonaceae 153 0 3

24a Bacteroidetes Myroides 142 0 3

6a Actinobacteria Microbacterium 120 0 3

4a Proteobacteria (!) Pseudomonas 768 0 3

28a Proteobacteria (!) Providencia 187 0 3

a OTU is found exclusively in larvae or substrate.

Fig. 2. Phylum-level 16S OTU assignments.

Annals of the Entomological Society of America, 2017, Vol. 110, No. 1 65



genus in the laboratory larvae. The lower proportion of betaproteo-

bacteria in the larvae can be attributed to differences in the order

Burkholderiales; however, no patterns were observed below this tax-

onomic level. The small number of epsilonproteobacteria observed

exclusively in the field and natural larvae belong primarily to the ge-

nus Campylobacter.

Nonmetric multidimensional scaling (NMDS) was used to deter-

mine whether there were compositional differences between the lar-

val communities and their respective substrates (Fig. 4). Larval

bacterial communities are clearly distinct from their developmental

substrates. However, the NMDS plot also suggests that substrates

can influence the composition of the gut microbial communities to a

certain degree due to the relative proximity of each larval sample to

its food sample. Heatmaps and dendrograms compiled from a Bray-

Curtis dissimilarly matrix support the similarities between the larvae

and their food substrates, but clearly show that the larvae are more

similar to one another than they are to the substrate on which they

are fed (Fig. 5).

Composition of 18S SSU Communities Associated With

Larvae and Substrates
A total of 78,841 high-quality sequences from six stable fly larval

and substrate samples were analyzed using the 18S small subunit

(ssu) rRNA genes (Table 6). The seventh sample (laboratory larvae)

was removed due to a lack of 18S microbial reads obtained from

this sample. After removing low quality reads, denoising flowgrams,

and removing redundant reads, 4,601 unique sequences remained.

Of these, 1,803 were flagged as potential chimeras and were re-

moved from the analysis, and 53 were eliminated from the analysis

because they were not of microbial origin. There were 29 sequences

remaining in laboratory larvae following chimera analysis, and all

were eliminated from the analysis following the removal of chloro-

plast, mitochondria, and archaeal lineages. Subsampling for alpha

diversity metrics was performed using a subsample size of 6,019.

Fig. 3. Class-level 16S OTU assignments. (A) Firmicutes. (B) Bacteroidetes. (C) Proteobacteria.

Fig. 4. Nonmetric multidimensional scaling (NMDS) of 16S amplicons. Larval

communities (circles) are distinct from, but not independent of, substrate

communities (triangles).
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There were a total of 506 18S OTUs in the six samples. Of these,

395 represented OTUs unique to a single sample, and 191 were sin-

gletons. The top 10 OTUs (measured by relative abundance of reads

among all six samples) contained 58% of the sequences, and the top

37 OTUs contained 90% of the sequences. The most abundant

kingdom-level OTU assignment was to the monophyletic fungi/

metazoan Opisthokonts group. This group accounted for 40% of all

sequences, and was found in all six samples. The SAR supergroup,

representing Stramenophiles, Alveolates, and Rhizaria, were also

present in all six samples. A single unclassified protest of the

superphylum Alveolata was represented by 3, 88, and 41 sequences

in substrates from field, natural-negative, and natural positive, re-

spectively, and was not detected in the corresponding field or natu-

ral larvae. Otherwise, no patterns were observed at the kingdom

level distinguishing larvae from substrates, or natural-positive from

natural-negative substrates. At the phylum level, the top 10 most

abundant OTUs belonged to five groups, and included fungal mem-

bers of both both asco- and basidomycota (Table 7). Rank abun-

dance plots of the 18S data revealed that eukaryotic microbial

communities from the substrates were more diverse in comparison

to the larvae, displaying both higher richness and higher evenness

values (Fig. 6). The higher diversity of the substrate communities

compared to those derived from larvae was confirmed using Chao,

Ace, Jackknife and Simpson indices (Table 8).

Microscopic surveillance validated the presence of an unclassi-

fied Alveolata that appeared to be highly abundant in natural larvae

(Table 7). Sporozoites (Fig. 7) and trophozoites (Fig. 8) of an un-

known gregarine (phylum Aplicomplexa, class Conoidasida) were

tentatively identified in stable fly larvae and adult females, respec-

tively. Sporozoites were located in the larval midgut and Malpighian

tubules. Trophozoites were seen on the haemocoel side of the mid-

gut in an adult female stable fly.

Fig. 5. Larvae have bacterial communities that are distinct from the substrates in which they developed.

Table 6. 18S raw and filtered read counts from stable fly larvae and

their developmental substrates

Sample Raw reads Filtered reads

Field larvae 6488 6019

Field substrate 22241 18840

Laboratory larvae 3036 0

Laboratory substrate 11287 6384

Natural larvae 12095 11109

Natural substrate-positive 8577 6975

Natural substrate-negative 8282 6700
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Discussion

The microbial community of the third-instar stable fly larvae is un-

ambiguously distinct from the microbial community of the support-

ing substrate, with bacterial communities from larvae reared on

different substrates more similar to each other than to the communi-

ties from their individual supporting substrates. Both larvae-specific

and substrate-specific OTUs were identified in this particular sample

set, as well as OTUs that were clearly more abundant in natural-

positive compared to natural-negative substrates.

The microbial communities in third-instar stable flies are less di-

verse than the environments in which they developed and contain

higher abundances of certain taxonomic groups and OTUs. This

could be explained by selective host–microbe interactions or larval

Fig. 6. 18S rank abundance plots of stable fly larvae and their developmental substrates.

Table 7. Top 10 18S OTUs in stable fly larvae and their developmental substrates

OTU Taxonomy Field

larvae

Field

substrate

Lab

substrate

Natural

larvae

Natural substrate

positive

Natural substrate

negative

02 Unclassified Alveolata 0 42 0 2612 1302 350

04 Ascomycota 0 0 3431 0 0 0

06 Unclassified Chrysophyceae 2033 416 0 0 232 250

07 Spirotrichea 0 2207 206 0 2 4

01 Ascomycota 82 75 0 0 374 1444

03 Ascomycota 0 331 0 0 292 902

14 Unclassified Chrysophyceae 351 76 0 0 478 347

15 Unclassified Chrysophyceae 1211 0 0 0 0 0

11 Unclassified Eukaryota 0 0 0 907 179 16

20 Basidiomycota 6 23 1057 0 0 0

Table 8. Fungal richness and diversity in stable fly larvae and their developmental substrates

Measure Field larvae Field substrate Laboratory substrate Natural larvae Natural substrate positive Natural substrate negative

OTUs 82 266 24 60 191 183

Chao 130 (101–205) 396 (343–486) 42 (28–105) 75 (65–107) 244 (219–294) 255 (220–324)

Ace 195 (156–256) 389 (347–451) 35 (27–67) 79 (68–107) 245 (223–283) 241 (217–282)

Jackknife 139 (109–169) 490 (409–571) 44 (27–60) 78 (66–90) 254 (231–277) 322 (258–386)

Shannon 2.52 (2.48–2.56) 2.65 (2.62–2.68) 1.43 (1.40–1.46) 1.98 (1.95–2.00) 3.07 (3.03–3.11) 3.22 (3.18–3.26)

Simpson 0.17 (0.16–0.17) 0.17 (0.16–0.17) 0.37 (0.36–0.38) 0.23 (0.23–0.24) 0.10 (0.10–0.10) 0.09 (0.08–0.09)

Parentheticals represent the upper and lower boundaries of the 95% confidence intervals.
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gut physiology. Results from this investigation indicate that while the

microbial makeup of developmental substrates has some influence on

stable fly bacterial communities, the internal physiology of third-instar

stable flies likely has a greater impact on microbial community compo-

sition. As with other dipteran larvae, stable flies are equipped with nu-

merous olfactory and gustatory sensillae to interact with their

environment (Friesen et al. 2015), which could potential play roles in

substrate selection and microbial acquisition from the environment.

For example, larval house flies are attracted to ammonium, which is

also a common attractant for blood-feeding flies (Hribar et al. 1992).

Ammonium is also the main volatile associated with many bacterial

cultures and can influence stable fly oviposition behavior (Romero

et al. 2006). Given that microbial communities and their metabolites

are heterogenous within larval media, it is not unreasonable to predict

non-random behavior from stable fly larvae within their environments.

In other words, selective grazing on regions of the substrate containing

certain microbial communities may explain why some OTUs associated

with the substrate are retained in the gut while others were not found.

Additionally, and perhaps more significantly, internal physiology

likely influences enrichment and retention of microflora in stable

flies, as has been observed for other insects. House fly larvae, which

have a gut morphology similar to larval stable flies, employ several

digestive mechanisms including a pH gradient and enzymes such as

lysozyme and cathepsin D-like proteinase (Espinoza-Fuentes and

Terra 1987). In larval house flies, the pH in the fore- and hind-mid-

guts is 6.1 and 6.8, respectively, while the mid-midgut has a pH of

3.1 (Terra et al. 1988). Bacteria appear to be primarily killed in the

mid-midgut while the nutrients from lysed bacterial cells are ab-

sorbed in the hind-midgut (Lemos and Terra 1991). Bacteria that

colonize stable fly guts may also secrete antibacterial products to

prevent competition from other bacterial species (Greenberg and

Klowden 1972, Erdmann 1987). Oxygen levels within the larval gut

may also have had an effect. Three of the four genera that were

more abundant in larvae compared to their substrates were faculta-

tive anaerobes or microaerophilic, whereas all four of the genera

that were more abundant in substrate were aerobic.

Bacterial genera that were more abundant proportionally in lar-

vae compared to their substrates were Erysipelothrix,

Dysgonomonas, Ignatzschineria (Gammaproteobacteria), and

Campylobacter (Epsilonprotobacteria). Ignatzschineria is emerging

as a common isolate from flies. First described as the genus

Schineria, these gram-negative, aerobic, rod shaped bacteria were

initially isolated from the larvae of myasis-causing flesh flies,

Wohlfahrtia magnifica (Toth et al. 2001). Subsequently, this genus

has been isolated from adult house flies (Gupta et al. 2012) and the

blow flies Lucilia sericata and L. cuprina (Singh et al. 2015). It has

also been isolated from the wounds of a 69-year old man found un-

conscious in a forest in the Loire Valley, France (Le Brun et al.

2015). The same wounds were infested with maggots that were not

taxonomically identified but assumed to be W. magnifica.

Dysgonomonas isolates have been reported from a variety of

samples including human clinical specimens, a microbial fuel cell,

and the guts of the two termites Reticulitermes speratus and

Macrotermes barneyi (Hofstad et al. 2000, Almuzara et al. 2009,

Kodama et al. 2012, Yang et al. 2014, Pramono et al. 2015).

The genus is a coccobacillus-shaped gram-negative, facultative

anaerobe. D. capnocytophagoides replaced the previously named

CDC (Centers for Disease Control and Prevention) group DF-3

(dysgonic fermenter 3) which was characterized as being resistant

to penicillins, cephalosporins, aminoglycosides, and ciprofloxa-

cins. In human samples, isolates are typically recovered from im-

munocompromised patients and have thus been described as a

potential opportunistic pathogen. Its impact on animal health is

not currently known.

Fig. 7. Phase-contrast (A) and confocal (B) micrographs of gregarine sporozoites in larval stable flies.

Fig. 8. Scanning electron micrograph of gregarine trophozoites (A and B) on the haemocoel side of the midgut in an adult female stable fly.
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Erysipelothrix are gram-positive, facultative anaerobic, nonspor-

ing rods. The genus includes three species: E. tonsillarum, E. inopi-

nata, and E. rhusiopathiae. The first two species were isolated from

the tonsils of healthy pigs and sterile-filtered vegetable peptone

broth, respectively (Takahashi et al. 1987, Verbarg et al. 2004). The

latter species is an animal pathogen most commonly associated with

livestock, specifically swine, and may also cause disease in humans

(Brooke and Riley 1999). E. rhusiopathiae can manifest itself as ery-

sipelas in calves and may be shed in feces and urine into bedding ma-

terial. E. rhusiopathiae survives for long periods in the environment

(up to 5 mo in swine feces, 5 d in drinking water, 14 d in sewage,

and 35 d in soil). If this species is able to colonize and survive within

stable fly larvae, this insect could transport this pathogen into new

environments, thereby increasing the risk of human and cattle dis-

ease. Clearly, further research is warranted to determine which spe-

cies of Erysipelothrix is being detected and to characterize its

epidemiology in this setting.

Alphaproteobacteria were more abundant proportionally in the

natural and field substrates compared to their larvae. Differences

were primarily attributed to Devosia, Brevundimonas,

Sphingopyxix, and Paracoccus. The only other investigation that

has utilized 454-pyrosequencing to characterize the microflora of a

stable fly developmental substrate (aged horse manure) also de-

scribed a relatively high abundance of Devosia, Brevundimonas,

and Sphingopyxis (Albuquerque and Zurek 2014). Devosia spp. are

gram-negative, aerobic, rod-shaped bacteria. Most of the species de-

scribed originated from forest and agricultural soil samples. The ge-

nus is known for its ability to survive in environments contaminated

with diesels, hydrocarbon pesticides, and mycotoxins. Devosia spp.

have been isolated from enriched nitrifying communities (Vanparys

et al. 2005), which may be important to stable fly larval develop-

ment (Friesen et al. 2016a). Brevundimonas spp. are motile, gram-

negative, aerobic, non-lactose fermenting bacilli that were previ-

ously classified as Pseudomonas (Segers et al. 1994). Among the

traits that differentiate the two genera are the single, short flagellum

(Leifson and Hugh 1954) and limited biochemical activity of the

brevundimonads. A Brevundimonas spp. has been isolated also from

house fly pupae and puparia collected from cattle manure (Zurek

and Nayduch 2016).

The main genera responsible for differences between the positive

and negative field substrates were Dysgonomonas and

Proteiniphilum. In contrast to Dysgonomonas, Proteiniphilum was

more abundant in substrate than in the larvae. Proteiniphilum is a

gram-negative rod that is an obligate anaerobe. Proteiniphilum ace-

tatigenes was the first species described for this genus and was iso-

lated from the sludge in an upflow anaerobic sludge blanket (UASB)

reactor (Chen and Dong 2005) that treated brewery wastewater.

Proteiniphilum has been isolated also from a bioreactor seeded with

sewage sludge from a wastewater treatment plant (Maspolim et al.

2015) and waste-activated sludge (Guo et al. 2015). In the latter in-

vestigation, it was found that Proteiniphilum was more likely to be

enriched as lignin and humus content increased. Interestingly, sub-

strates supporting stable fly development on Reunion Island had lig-

nin contents of 4.0–6.2% (Giles et al. 2008). Corn stalks, which

were a main constituent of the calf bedding in this investigation,

have similar lignin contents ranging from 4.0–7.3% (Saxena and

Stotzky 2001, Daud et al. 2013).

The most abundant 18S OTU was assigned to an unclassified

Alveolata and was primarily detected in natural larvae and natural-

positive and natural-negative substrates. Sporadic surveillance of

larval and adult stable fly microflora repeatedly revealed the pres-

ence of an organism that was tentatively identified as a gregarine.

Gregarines are transmitted when a new host ingests oocysts in the

environment. Sporozoites emerge from the oocysts and mature into

trophozoites as they attach to and feed on host cells. These parasitic

apicomplexans may be detected in the digestive tract, reproductive

organs, or coelom of marine, freshwater, or terrestrial invertebrates.

Within the Diptera, gregarines have been described in deer flies

(Krinsky 1975, Anderson and Magnarelli 1978), crane flies (Ludwig

1946), sand flies (Votypka et al. 2009, Lantanova et al. 2010), and

mosquitoes (Chen 1999). Prevalence of gregarines within the

Muscamorpha is unknown.

Because physiochemical properties were quantified in only two

samples of calf bedding, a comparison of substrates with and with-

out stable fly larvae cannot be made. However, it is worth noting

that while the moisture content and pH appear to be similar in calf

bedding and hay residue (Friesen et al. 2016b), ammonium levels

were higher in calf bedding. The probability of collecting stable fly

larvae in hay residue peaked when ammonium levels were between

200–300 ppm, compared to over 1,100 ppm in calf bedding. A more

thorough profile of calf bedding is needed to determine if this repre-

sents an outlier.

This is the first culture-independent description of the bacterial

and eukaryotic microbial community in stable fly larvae and the first

description of the eukaryotic microbial community in their develop-

mental substrates. Results from this investigation demonstrate that

microbial communities of the larvae are distinct from those of their

supporting substrates, and suggest that larval host internal physiol-

ogy may play a selective role. Results also highlight several areas in

need of further research including Erysipelothrix–larval interactions,

the role of certain Alphaproteobacteria in larval development, the

influence of lignin content on microbial community composition

and stable fly larval development, and the interactions between eu-

karyotic microorganisms and stable fly larvae.
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