30 research outputs found

    High performance magnetic field sensor based on Superconducting Quantum Interference Filters

    Full text link
    We have developed an absolute magnetic field sensor using Superconducting Quantum Interference Filter (SQIF) made of high-T_c grain boundary Josephson junctions. The device shows the typical magnetic field dependent voltage response V(B), which is sharp delta-like dip in the vicinity of zero magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B_0 ~ 0 to a value B ~ B_1, which is about the average value of the earth magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ~ B_1, and the further shielding of the SQIF results in a shift of the dip towards B_0 ~ 0. The low hysteresis observed in the sequence of experiments (less than 5% of B_1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-T_c SQIFs in magnetometry.Comment: 4 pages, 2 figure

    Quadratic Mixing of Radio Frequency Signals using Superconducting Quantum Interference Filters

    Full text link
    The authors demonstrate quadratic mixing of weak time harmonic electromagnetic fields applied to Superconducting Quantum Interference Filters, manufactured from high-TcT_{\mathrm{c}} grain boundary Josephson junctions and operated in active microcooler. The authors use the parabolic shape of the dip in the dc-voltage output around B=0 to mix \emph{quadratically} two external rf-signals, at frequencies f1f_{\mathrm{1}} and f2f_{\mathrm{2}} well below the Josephson frequency fJf_{\mathrm{J}}, and detect the corresponding mixing signal at ∣f1−f2∣| {f_{1}-f_{2}}| . Quadratic mixing takes also place when the SQIF is operated without magnetic shield. The experimental results are well described by a simple analytical model based on the adiabatic approximation.Comment: 3 pages, 3 figure

    Effects of magnetic field on two-dimensional Superconducting Quantum Interference Filters

    Full text link
    We present an experimental study of two-dimensional superconducting quantum interference filters (2D-SQIFs) in the presence of a magnetic field B. The dependences of the dc voltage on the applied magnetic field are characterized by a unique delta-like dip at B=0, which depends on the distribution of the areas of the individual loops, and on the bias current. The voltage span of the dip scales proportional to the number of rows simultaneously operating at the same working point. In addition, the voltage response of the 2D-SQIF is sensitive to a field gradient generated by a control line and superimposed to the homogeneous field coil. This feature opens the possibility to use 2D superconducting quantum interference filters as highly sensitive detectors of spatial gradients of magnetic field.Comment: 3 pages, 4 figures, submitted to AP

    Two tone response of radiofrequency signals using the voltage output of a Superconducting Quantum Interference Filter

    Full text link
    In the presence of weak time harmonic electromagnetic fields, Superconducting Quantum Interference Filters (SQIFs) show the typical behavior of non linear mixers. The SQIFs are manufactured from high-T_c grain boundary Josephson junctions and operated in active microcooler. The dependence of dc voltage output V_dc vs. static external magnetic field B is non-periodic and consists of a well pronounced unique dip at zero field, with marginal side modulations at higher fields. We have successfully exploited the parabolic shape of the voltage dip around B=0 to mix quadratically two external time harmonic rf-signals, at frequencies f_1 and f_2 below the Josephson frequency f_J, and detect the corresponding mixing signal at f_1-f_2. When the mixing takes place on the SQIF current-voltage characteristics the component at 2f_2 - f_1 is present. The experiments suggest potential applications of a SQIF as a non-linear mixing device, capable to operate at frequencies from dc to few GHz with a large dynamic range.Comment: 10 pages, 3 Figures, submitted to J. Supercond. (as proceeding of the HTSHFF Symposium, June 2006, Cardiff

    Tailoring discrete quantum walk dynamics via extended initial conditions: Towards homogeneous probability distributions

    Full text link
    We study the evolution of initially extended distributions in the coined quantum walk on the line by analyzing the dispersion relation of the process and its associated wave equations. This allows us, in particular, to devise an initially extended condition leading to a uniform probability distribution whose width increases linearly with time, with increasing homogeneity.Comment: 4 pages, 2 figure

    Wigner Functions on a Lattice

    Get PDF
    The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum mechanical expectation values in terms of Wigner functions are also discussed.Comment: 11 pages, no figures, REVTE

    Shortcuts to adiabaticity in a time-dependent box

    Full text link
    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential analogous to those used in soliton control. The method is extended to a broad family of many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.Comment: 6 pp, 4 figures, typo in Eq. (6) fixe

    Quantum carpets woven by Wigner functions

    Get PDF
    The dynamics of many different quantum systems is characterized by a regular net of minima and maxima of probability stretching out in a spacetime representation. We offer an explanation to this phenomenon in terms of the Wigner function. This approach illustrates very clearly the crucial role played by interference

    Tribological design constraints of marine renewable energy systems

    No full text
    Against the backdrop of increasing energy demands, the threat of climate change and dwindling fuel reserves, finding reliable, diverse, sustainable/renewable, affordable energy resources has become a priority for many countries. Marine energy conversion systems are at the forefront of providing such a resource. Most marine renewable energy conversion systems require tribological components to covert wind or tidal streams to rotational motion for generating electricity while wave machines typically use oscillating hinge or piston within cylinder geometries to promote reciprocating linear motion. This paper looks at the tribology of three green marine energy systems, offshore wind, tidal and wave machines. Areas covered include lubrication and contamination, bearing and gearbox issues, biofouling, cavitation erosion, tribocorrosion, condition monitoring as well as design trends and loading conditions associated with tribological components. Current research thrusts are highlighted along with areas needing research as well as addressing present day issues related to the tribology of offshore energy conversion technologies
    corecore