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Abstract. The dynamics of many different quantum systems is characterized
by a regular net of minima and maxima of probability stretching out in a spacetime
representation. We offer an explanation to this phenomenon in terms of the
Wigner function. This approach illustrates very clearly the crucial role played by
interference.

1. Introduction

The representation of the probability distribution of one-dimensional quantum systems, as a
function of position and time, often displays unexpected regularities in the long time evolution.
Besides the full and fractional revivals [1]–[5] taking place at well defined times, the complete
spacetime picture is characterized by highly ordered patterns of minima (canals) and maxima
(ridges) of probability.

In figures1, 2 and3 we show such structures for wave packets propagating in an infinitely
deep potential well, a harmonic oscillator potential and a quartic potential. For obvious reasons,
the namequantum carpethas emerged to describe this phenomenon. Quantum carpets appear
in many fields of wave physics ranging from quantum mechanics, with applications in nuclear
physics [6] and Bose–Einstein condensation [7], to electromagnetic waves and, in particular,
waveguides.

Various explanations of this phenomenon have been offered [5], [8]–[18]. In this paper,
however, we use the unique advantages of an electronic journal to visualize an approach [11, 12]
based on the Wigner function [19]. We present a collection of movies illustrating very clearly
how the Wigner function weaves quantum carpets. For simplicity, we restrict ourselves to the
problem of a particle in a box, even though our conclusions apply equally well to a much more
general class of systems.

The paper is organized as follows: in order to introduce the reader to this phenomenon, we
present a collection of quantum carpets for various potentials in section2. In section3, we then
show in a movie how these structures make their appearance in the dynamics of the wave packet.
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Figure 1. Density plot of the probability density|ψ(x, t)|2 to find the particle
at positionx at timet for an initial Gaussian wave packet centred onx̄ = L/4,
having widthσ = L/20 and average momentum̄p = 15̄hπ/L. The height of the
plot is represented by the colours shown in the bar on the right-hand side.

Here, and in the remainder of the paper, we confine ourselves to the problem of the particle in a
box. In section4 we use a representation of the probability density in terms of Wigner functions
derived in references [11, 15] to identify the interference terms, that is, theghostterms. These
are responsible for the pattern formation. Our concluding remarks are given in section5.

2. A collection of quantum carpets

The first striking example of a quantum carpet emerged from numerical simulations performed
on a particle confined to an infinitely deep potential well [20].

As shown in figure1, the initial Gaussian probability distribution of finding the particle at
positionx at timet gives rise to a rich pattern of straight world lines of the form

t

T/2
=

1
q

x

L
+ constant (1)

with q being always an integer number. HereT is the revival time andL denotes the width of
the box. In figure1, we can easily distinguish the lines corresponding toq =±1,±2,±3,. . ..

Note that canals and ridges of probability depart from the corners or enter from the sides,
while the particle started fromx = L/4. Moreover, these structures correspond to very small
momenta, which have an exponentially small weight in the original wave packet centred at a large
average momentum. Further studies [8, 9] have proved that the overall features of the spacetime
structures, like the position and the steepness of the world lines, are independent of the initial
conditions.

A general explanation for this phenomenon rests on multimode interference [13]. The initial
wave packet encompasses many excited modes of the system, which interfere pairwise; each
pair of modes produces a so-calledintermode tracein the probability distribution. These traces
correspond to lines of constant phase in spacetime and their visibility is enhanced by degeneracy
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[13, 15, 16]. The most pronounced structures are due to the superposition of many intermode
traces, created by pairs of different eigenmodes. Here the spectrum of energies enters in a crucial
way: one finds the highest degeneracy in strongly confining potentials, whose best example is
provided by the infinitely deep square well, while the opposite extreme case of very poor overlap
among intermode traces is represented by the harmonic oscillator.

Indeed, in the case of the harmonic oscillator, the linear dependence of the energy levels
on the quantum numbern reduces the degeneracy and washes out the patterns. A possible way
to restore them is a careful choice of the initial wave packet. When we consider a wave packet
made up only of energy eigenstates with quantum numbers being perfect squares, such asn = 0,
1, 4, 9,. . ., the initial condition introduces the required degeneracy among the intermode traces.

Figure2shows the resulting structures in the probability distribution. These patterns appear
predominantly near the bottom of the potential, where the particle behaves almost like a free
particle. Here, a rich pattern of canals and ridges develops, similar to the case of a particle in a
box.

However, it is not always necessary to engineer the appropriate initial wave packet in order
to observe ordered structures in the probability distribution. As mentioned before, hard wall
potentials are good candidates for producing quantum carpets. One should, therefore, expect to
see patterns for an anharmonic potentialU(x) ∝ x4 [14], which is an intermediate case between
the infinite square well and the harmonic oscillator. In figure3 we display the time evolution
of the probability distribution starting with the ground state wave function hit by a short pulse
delivering an average momentum̄p. Enough states are populated in order to produce intermode
traces that are almost straight lines. Indeed, the shape of the structures depends on the specific
potential under consideration; strictly speaking, straight lines are another special feature of the
box, while, in general, curved lines are to be expected.

We conclude this section by mentioning that the formalism of intermode traces [13, 14]
applies to any kind of potential. We can, therefore, identify the pairs of eigenmodes generating
each trace and classify them into two categories: quantum traces and classical ones. The latter
ones are reminiscent of the classical motion of the particle, which is still visible before the wave
packet collapses, as shown in the first couple of cycles in figure3.

3. Order in the dynamics of the wave packet

The problem of a particle confined to an infinitely deep square well is the most elementary
problem in quantum mechanics. For this example the probability amplitudeψ(x, t) to find the
particle of massM at timet at the positionx in the box of lengthL reads

ψ(x, t) =
∞∑
m=1

ψm sin
(
mπ

x

L

)
exp

(
−2πim2 t

T

)
. (2)

Here the quantitiesψm are the expansion coefficients of the initial wave packetψ(x, t = 0) ≡
ϕ(x) into the energy wave functions [21]

um(x) =

√
2
L

sin(kmx) (3)

with wave numbers

km ≡ m
π

L
(4)
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Figure 2. Top: density plot of the probability density|ψ(x, t)|2 for a specially
tailored wave packet moving in a harmonic potential. Only eigenstates with
quadratic quantum numbers,n = 0, 1, 4, 9,. . ., enter into play. Bottom: we show
a magnified view around the centre of the potential. Lengths are expressed in
units of

√
h̄/Mω, with M being the mass of the particle andω the frequency

of the harmonic oscillator. HereT ≡ 2π/ω is the oscillation period. In both
pictures we use the colour coding shown in the bar on the right-hand side.

and eigenenergies

Em ≡
(h̄km)2

2M
= m2h̄

2π
T
. (5)

In the last expression, as well as in equation (2), we have introduced the revival time

T ≡ 4ML2

h̄π
(6)
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Figure 3. Density plot of the probability density|ψ(x, t)|2 for the ground state
function moving with average momentum̄p in the anharmonic potentialU(x) =
Ax4. Lengths and time are scaled, respectively, by the factorsxs ≡ (h̄2/MA)1/6

andts ≡ (M2/h̄A)1/3. The colour coding is shown in the bar on the right-hand
side.

at which the wave function is identical to its initial form att = 0, that is

ψ(x, t = T ) = ψ(x, t = 0). (7)

In the first video sequencewe present the resulting time evolution of the probability
distribution |ψ(x, t)|2. The initial wave function is a Gaussian wave packet, centred around
x = L/4, with widthσ = L/20 and average momentum̄p = 15̄hπ/L.

To guide the reader’s eyes, we have put two arrows underneath the position axis. These
arrows move with constant velocity and bring out in this way the underlying regularity in the
wave packet dynamics, which otherwise would not be apparent because of fast oscillations. The
left-hand arrow is always pointing to a minimum in the probability density, while the right-hand
one is sometimes at a maximum and sometimes at a minimum. In the spacetime density plot
of figure1, the arrows move along the two main diagonals: one arrow, connecting the left-hand
lower corner with the right-hand upper one, is a canal between two ridges and the other one,
connecting the lower right-hand corner with the left-hand upper one, is a chopped ridge between
two canals.

In thevideo sequence, the rectangular bar on the left-hand side indicates time. On this ‘time
thermometer’ we have marked important fractions of the revival timeT . The revival time is the
natural time scale of the problem since, according to equation (7), the probability amplitude is
identical to that at timet = 0. However, atT/2 the wave packet has already reshaped itself, even
though it takes a different phase and the probability density happens to be the mirror image of
the initial one. Moreover, for the sake of brevity, we only follow the wave packet dynamics until
T/4, which is, nevertheless, a sufficiently long time interval to appreciate the essential features
of the system evolution.
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At fractions of the revival timeT , the probability density splits up into several replicas
of the initial Gaussian distribution. Here we do not enter the theory of the fractional revivals
[1]–[5], but want to draw attention to the most remarkable snapshots: for example, we note three
wave packets appearing att = T/6 or two counterpropagating ones att = T/4. For a detailed
discussion of the behaviour of the wave function at and in the neighbourhood of a fractional
revival, we refer the reader to reference [22].

4. Wigner function approach

In this section we analyse the mechanism responsible for the appearance of spacetime structures
in the probability density. To this end we adopt an approach based on the Wigner function.
For the sake of brevity, we do not present the complete derivation here, but rather visualize the
essential results in an innovative and effective way, that is, by means ofvideo sequences.

From expression (2) for the probability amplitude, it is not obvious how the patterns of the
carpets emerge. To bring this out more clearly we recall an expression for the probability density
as a sum over Wigner functions, derived in references [11, 15]. This representation reads

|ψ(x, t)|2 =
πh̄

2L

+∞∑
n,l=−∞

(−1)nlWφ[ξn,l(x, t), pn] (8)

where

Wφ(x, p) ≡ 1
2πh̄

∫ +∞

−∞
dy eipy/h̄φ

(
x− y

2

)
φ∗
(
x+

y

2

)
(9)

is the Wigner function of the antisymmetric wave function

φ(x) ≡ ϕ(x)− ϕ(−x) (10)

built out of the original wave packetϕ(x) and its mirror image. (Note that there are at least two
ways to derive expression (8). The first approach [15] relies on the standard representation (2) of
the wave function, calculates the absolute value squared, and rewrites the resulting double sum
using a generalized Poisson summation formula [15]. The second approach [11] uses the concept
of the Wigner function and, following an idea of Max Born [23], replaces the propagation of the
single wave packet in a box by the free propagation of an array of antisymmetric wave packets.)

Moreover, we have introduced the world lines

ξn,l(x, t) ≡ x− n L

T/2
t− lL (11)

and the momenta

pn ≡ np1 ≡ n
πh̄

2L
. (12)

We point out that the world lines of equation (11) for ξn,l ≡ 0 reduce to the form of
equation (1), which describes the shape of the canals and ridges giving rise to the quantum
carpet. Hence, the probability density consists of a superposition of Wigner functions aligned
along straight lines, defined byξn,l(x, t). This is the first clue of the appearance of spacetime
structures in the probability density of a particle confined to an infinitely deep potential well.

According to equation (2) the wave function displays a periodicity in space with period 2L.
This manifests itself in a quantization (equation (12)), of the momentum. In the representation
of equation (8), the summation overn accounts for this quantization of momentum. The other
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Figure 4. Top: Wigner function in phase space for the periodic array of
antisymmetric wave functions. We restrict the picture to the physically relevant
portion of the position axis, namely the box width. Momentum is expressed in
units ofp1 ≡ h̄π/2L. Orange areas correspond to positive parts of the Wigner
function, while blue shows the negative parts. Bottom: the resulting probability
distribution to find the particle at positionx at timet = 0.

summation indexl labels the walls of the original box and of its infinitely many replicas resulting
from the 2L periodicity of the energy wave functions.

From equations (8) and (11) we note that the time evolution of the probability density follows
from the time evolution of the Wigner function of the antisymmetric superposition stateφ. This
time evolution is very simple: the position variablex is replaced byx − (pn/M)t. Therefore,
in order to understand the time evolution of the probability density we have to consider the free
evolution of the array

Wψ(x, pn) =
πh̄

2L

+∞∑
n,l=−∞

δ(p− pn)(−1)nlWφ(x− lL, pn) (13)

of Wigner functions.
We now take advantage of the multimedia capabilities of the journal to show the time

evolution of the Wigner function (second video sequence) and the resulting quantum carpet. This
animation displays the Wigner function in the upper diagram, and the corresponding probability
distribution in the lower one.

We can find the probability density geometrically by integrating the Wigner function over
momentum. To familiarize the reader with this presentation, we display in figure4 the Wigner
function at timet = 0 (top) and the resulting probability distribution inside the box (bottom). We
restrict the view of (x, p) phase space to the elementary box between [0,L] and do not show the
images lying outside. In our colour coding, blue tones are assigned to negative values, and orange
to positive ones. The vertical axis of the (x, p) phase space is centred around zero momentum.

Beside the orange ellipse, located inx = L/4 andp = p̄, which corresponds to the Wigner
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functionWϕ(x, p) of the original Gaussian wave packet, there are threeghostterms. These
terms, which initially do not contribute to the probability distribution because of their oscillatory
behaviour, play a fundamental role in weaving the quantum carpets. They result from the
bilinearity of the Wigner function (equation (9)), in the wave function. Indeed, the Wigner
function of the superpositionφ(x) (equation (10)), reads

Wφ(x, p) = Wϕ(x, p) +Wϕ(−x,−p) +Wint(x, p). (14)

HereWϕ(x, p) andWϕ(−x,−p) correspond to the two wave packetsϕ(x) andϕ(−x) building
upφ(x) and

Wint(x, p) ≡ −
1

2πh̄

∫ +∞

−∞
dy eipy/h̄ϕ

(
x− y

2

)
ϕ∗
(
−x− y

2

)
+ c.c. (15)

is theghostinterference term. This term is responsible for the two ellipses located at the walls of
the box and centred aroundp = 0. The location of these two ellipses explains why the quantum
carpets consist of a net of straight lines departing always from the walls of the box, regardless of
the actual position of the particle at timet = 0. Hence, the Wigner functionWϕ(x, p) associated
with the original wave packetϕ(x) cannot be involved in the pattern formation. The third
horizontally striped ellipse represents, instead, an interference term due to the 2L periodicity.

We now turn to the time evolution (second video sequence) of the initial distribution
presented in figure4. Components with a positive momentum move to the right, while those
with a negative momentum propagate to the left. Moreover, each momentum component
proceeds at a different speed, leading to a shearing of the initially slightly elliptical shape of the
Wigner function. Reflections at the walls are automatically taken into account by our periodic
representation: terms leaving the box re-enter the scene from the same side, but with reversed
momentum.

After the early stage of the dynamics, during which the wave function spreads and starts
to interfere with itself, giving rise to the oscillations in the probability distribution, an almost
complete collapse occurs. At the same time positive, negative and oscillatory terms of the Wigner
function are completely mixed up. However, at fractions of the revival time they rearrange in
an ordered way to produce the fractional revivals and eventually, att = T/2, they create the full
revival.

To gain more insight into the spacetime structures, we now concentrate on the central part
of the Wigner function, around momentump = 0. Thethird video sequenceshows in the upper
diagram a magnified view of the Wigner function, with the momentum ranging from−3p1 to3p1.
These components belong to the interference termsWint(x, p) produced by the antisymmetric
superposition. In the lower diagram, we show the spacetime representation of the probability
density evolving with time. This diagram starts from an essentially empty picture and slowly
builds up the carpet.

Canals and ridges depart from both corners. This is due to the fact that the interference terms
of the Wigner function are initially aligned atx = 0 andx = L. Due to the different momenta
they separate from each other, carving canals and mounting ridges along straight lines of fixed
steepness. The slope of the spacetime structures is governed by the quantized momentapn. As
one can see from expression (11) for the world lines, smaller momenta correspond to straight
lines with larger steepness. These are also the most pronounced structures of the pattern and,
for this reason, we focus on the terms in the Wigner function aroundp = 0.

In order to follow in more detail the dynamics of the Wigner function and the corresponding
progressive weaving of the quantum carpet, we first highlight two terms of the Wigner function
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and the related world lines in the probability distribution. These are the momentap = ±p1

associated with the main diagonals of the carpet. Here we have marked with the same colour the
components of the Wigner function and the corresponding structures in the carpet. We clearly
recognize that the oscillations in the interference terms manifest themselves in the canals and
ridges along the corresponding world line.

We now turn to the components of the Wigner function with momentap = ±2p1, which
are responsible for the canals and ridges reaching the sides atT/4 (fourth video sequence). The
zig-zag pattern is due to the fact that atT/4 the terms in the Wigner function undergo a reflection
at the walls, i.e. they leave the box and immediately re-enter with reversed momentum, thus
producing structures with opposite slopes. This explains why canals and ridges always arise
either from the corners or from the sides of the spacetime picture. All the world lines converge
eventually, att = T/2, while the interference terms of the Wigner function realign themselves at
the box walls.

5. Conclusions

The quantum carpet woven by a particle confined to an infinitely deep square well can be described
by the time evolution of a periodic array of Wigner functions undergoing free evolution. The
interference terms of the Wigner function manifest themselves in the highly regular spacetime
structures in the probability distribution. Indeed, the results of ourvideosprovide clear evidence
of the one-to-one correspondence between the interference components, aroundp = 0, of the
Wigner function and the world lines in the probability density. We can, therefore, conclude that
the Wigner function is a useful tool for investigation of the origin of the quantum carpets and, in
particular, to illustrate the role of interference.
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Video sequences

Video sequence 1
In this movie we present the time evolution of the probability density|ψ(x, t)|2 to find the particle
at timet at positionx in a box of widthL. The initial wave function is a Gaussian wave packet,
centred around̄x = L/4, having widthσ = L/20 and an average momentum̄p = 15̄hπ/L. To
illustrate the regularity in the wave packet dynamics, we have placed two arrows, moving with
constant velocity, underneath the position axis. The left-hand arrow always points to a minimum
in the probability density (canal), while the right-hand arrow is sometimes at a minimum and
sometimes at a maximum (chopped ridge). The rectangular bar on the left-hand side indicates
time. We have marked on it important fractions of the revival timeT , at which we can observe
the fractional revivals of the wave packet. Especially remarkable are the revivals occurring at
T/6 andT/4, characterized, respectively, by the appearance of three and two replicas of the
original wave packet.

Video sequence 2
The upper part of this animation shows the time evolution of the Wigner function, and the lower
one shows the resulting probability distribution of finding the particle in the box. The Wigner
function is plotted in phase space, where the horizontal axis corresponds to position and the
vertical axis, on which we have marked the zero, corresponds to momentum. Positive values are
displayed in orange, and negative ones are shown in blue. The movie starts from the situation
depicted in figure4 and follows the dynamics up tot = T/2, when the wave packet reshapes
itself. Also, the time evolution of the Wigner function is characterized by fractional revivals
culminating in the full revival atT/2.

Video sequence 3
We concentrate on the enlarged view of the central part of the Wigner function, around momentum
p = 0. This magnified portion encompasses interference terms with momentum ranging from
−3p1 to 3p1. In the lower diagram, we follow the simultaneous weaving of the quantum carpet.
To make clear the correspondence between the interference terms of the Wigner function and
the world lines in the probability distribution, we mark, with the same colour, the components
of the Wigner function with momenta±p1 and the corresponding structures in the carpet.

Video sequence 4
We show the same sequence as in the previous animation, but this time we highlight the terms in
the Wigner function with momenta±2p1 and the corresponding zig-zag patterns in the quantum
carpet.
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