3,459 research outputs found

    Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution

    Full text link
    Suspensions of copper nanowires are emerging as new electronic inks for next-generation flexible electronics. Using a novel surface acoustic wave driven extensional flow technique we are able to perform currently lacking analysis of these suspensions and their complex buffer. We observe extensional viscosities from 3 mPa\cdots (1 mPa\cdots shear viscosity) to 37.2 Pa\cdots via changes in the suspension concentration, thus capturing low viscosities that have been historically very challenging to measure. These changes equate to an increase in the relative extensional viscosity of nearly 12,200 times at a volume fraction of just 0.027. We also find that interactions between the wires and the necessary polymer additive affect the rheology strongly. Polymer-induced elasticity shows a reduction as the buffer relaxation time falls from 819 to 59 μ\mus above a critical particle concentration. The results and technique presented here should aid in the future formulation of these promising nanowire suspensions and their efficient application as inks and coatings.Comment: 7 pages, 5 figures, under review for Soft Matter RS

    Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows

    Full text link
    Suspensions of motile cells are model systems for understanding the unique mechanical properties of living materials which often consist of ensembles of self-propelled particles. We present here a quantitative comparison of theory against experiment for the rheology of such suspensions. The influence of motility on viscosities of cell suspensions is studied using a novel acoustically-driven microfluidic capillary-breakup extensional rheometer. Motility increases the extensional viscosity of suspensions of algal pullers, but decreases it in the case of bacterial or sperm pushers. A recent model [Saintillan, Phys. Rev. E, 2010, 81:56307] for dilute active suspensions is extended to obtain predictions for higher concentrations, after independently obtaining parameters such as swimming speeds and diffusivities. We show that details of body and flagellar shape can significantly determine macroscale rheological behaviour.Comment: 12 pages, 1 appendix, 7 figures, submitted to Soft Matter - under revie

    The Nature of the Secondary Star in the Black Hole X-Ray Transient V616 Mon (=A0620-00)

    Full text link
    We have used NIRSPEC on Keck II to obtain KK-band spectroscopy of the low mass X-ray binary V616 Mon (= A0620-00). V616 Mon is the proto-typical soft x-ray transient containing a black hole primary. As such it is important to constrain the masses of the binary components. The modeling of the infrared observations of ellipsoidal variations in this system lead to a derived mass of 11.0 M_{\sun} for the black hole. The validity of this derivation has been called into question due to the possiblity that the secondary star's spectral energy distribution is contaminated by accretion disk emission (acting to dilute the variations). Our new KK-band spectrum of V616 Mon reveals a late-type K dwarf secondary star, but one that has very weak 12^{\rm 12}CO absorption features. Comparison of V616 Mon with SS Cyg leads us to estimate that the accretion disk supplies only a small amount of KK-band flux, and the ellipsoidal variations are not seriously contaminated. If true, the derived orbital inclination of V616 Mon is not greatly altered, and the mass of the black hole remains large. A preliminary stellar atmosphere model for the KK-band spectrum of V616 Mon reveals that the carbon abundance is approximately 50% of the solar value. We conclude that the secondary star in V616 Mon has either suffered serious contamination from the accretion of supernova ejecta that created the black hole primary, or it is the stripped remains of a formerly more massive secondary star, one in which the CNO cycle had been active.Comment: 20 pages, 5 figure

    Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes

    Full text link
    We investigate hole transport in polymer light-emitting-diodes in which the emissive layer is made of liquid-crystalline polymer chains aligned perpendicular to the direction of transport. Calculations of the current as a function of time via a random-walk model show excellent qualitative agreement with experiments conducted on electroluminescent polyfluorene demonstrating non-dispersive hole transport. The current exhibits a constant plateau as the charge carriers move with a time-independent drift velocity, followed by a long tail when they reach the collecting electrode. Variation of the parameters within the model allows the investigation of the transition from non-dispersive to dispersive transport in highly aligned polymers. It turns out that large inter-chain hopping is required for non-dispersive hole transport and that structural disorder obstructs the propagation of holes through the polymer film.Comment: 4 pages, 5 figure

    Coexistence of opposite opinions in a network with communities

    Get PDF
    The Majority Rule is applied to a topology that consists of two coupled random networks, thereby mimicking the modular structure observed in social networks. We calculate analytically the asymptotic behaviour of the model and derive a phase diagram that depends on the frequency of random opinion flips and on the inter-connectivity between the two communities. It is shown that three regimes may take place: a disordered regime, where no collective phenomena takes place; a symmetric regime, where the nodes in both communities reach the same average opinion; an asymmetric regime, where the nodes in each community reach an opposite average opinion. The transition from the asymmetric regime to the symmetric regime is shown to be discontinuous.Comment: 14 pages, 4 figure

    Polyoma virus infection and urothelial carcinoma of the bladder following renal transplantation

    Get PDF
    Renal transplant recipients are at increased risk of bladder carcinoma. The aetiology is unknown but a polyoma virus (PV), BK virus (BKV), may play a role; urinary reactivation of this virus is common post-renal transplantation and PV large T-antigen (T-Ag) has transforming activity. In this study, we investigate the potential role of BKV in post-transplant urothelial carcinoma by immunostaining tumour tissue for PV T-Ag. There was no positivity for PV T-Ag in urothelial carcinomas from 20 non-transplant patients. Since 1990, 10 transplant recipients in our unit have developed urothelial carcinoma, and tumour tissue was available in eight recipients. Two patients were transplanted since the first case of PV nephropathy (PVN) was diagnosed in our unit in 2000 and both showed PV reactivation post-transplantation. In one of these patients, there was strong nuclear staining for PV T-Ag in tumour cells, with no staining of non-neoplastic urothelium. We conclude that PV infection is not associated with urothelial carcinoma in non-transplant patients, and is uncommon in transplant-associated tumours. Its presence in all tumour cells in one patient transplanted in the PVN era might suggest a possible role in tumorigenesis in that case

    Analysis of deep levels in a phenylenevinylene polymer by transient capacitance methods

    Get PDF
    Transient capacitance methods were applied to the depletion region of an abrupt asymmetric n(+) -p junction of silicon and unintentionally doped poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] (MEH-PPV). Studies in the temperature range 100-300 K show the presence of a majority-carrier trap at 1.0 eV and two minority traps at 0.7 and 1.3 eV, respectively. There is an indication for more levels for which the activation energy could not be determined. Furthermore, admittance data reveal a bulk activation energy for conduction of 0.12 eV, suggesting the presence of an additional shallow acceptor state. (C) 1999 American Institute of Physics. [S0003-6951(99)02308-6]

    A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Full text link
    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3_{3} crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~μ\muA.Comment: 20 pages, 22 figures, revised version of arXiv:1601.00251v1, submitted to NIM

    Parallax and Distance Estimates for Fourteen Cataclysmic Variable Stars

    Full text link
    I used the 2.4 m Hiltner telescope at MDM Observatory in an attempt to measure trigonometric parallaxes for 14 cataclysmic variable stars. Techniques are described in detail. In the best cases the parallax uncertainties are below 1 mas, and significant parallaxes are found for most of the program stars. A Bayesian method which combines the parallaxes together with proper motions and absolute magnitude constraints is developed and used to derive distance estimates and confidence intervals. The most precise distance derived here is for WZ Sge, for which I find 43.3 (+1.6, -1.5) pc. Six Luyten Half-Second stars with previous precise parallax measurements were re-measured to test the techniques, and good agreement is found.Comment: 33 pages, 3 figures. Astronomical Journal, accepte

    U Geminorum: a test case for orbital parameters determination

    Full text link
    High-resolution spectroscopy of U Gem was obtained during quiescence. We did not find a hot spot or gas stream around the outer boundaries of the accretion disk. Instead, we detected a strong narrow emission near the location of the secondary star. We measured the radial velocity curve from the wings of the double-peaked Hα\alpha emission line, and obtained a semi-amplitude value that is in excellent agreement with the obtained from observations in the ultraviolet spectral region by Sion et al. (1998). We present also a new method to obtain K_2, which enhances the detection of absorption or emission features arising in the late-type companion. Our results are compared with published values derived from the near-infrared NaI line doublet. From a comparison of the TiO band with those of late type M stars, we find that a best fit is obtained for a M6V star, contributing 5 percent of the total light at that spectral region. Assuming that the radial velocity semi-amplitudes reflect accurately the motion of the binary components, then from our results: K_em = 107+/-2 km/s; K_abs = 310+/-5 km/s, and using the inclination angle given by Zhang & Robinson(1987); i = 69.7+/-0.7, the system parameters become: M_WD = 1.20+/-0.05 M_sun,; M_RD = 0.42+/-0.04 M_sun; and a = 1.55+/- 0.02 R_sun. Based on the separation of the double emission peaks, we calculate an outer disk radius of R_out/a ~0.61, close to the distance of the inner Lagrangian point L_1/a~0.63. Therefore we suggest that, at the time of observations, the accretion disk was filling the Roche-Lobe of the primary, and that the matter leaving the L_1 point was colliding with the disc directly, producing the hot spot at this location.Comment: 36 pages, 14 figures, ccepted for publication in A
    corecore