3,697 research outputs found

    Review of meteoroid-bumper interaction studies at McGill University

    Get PDF
    Experimental investigation of meteoroid-bumper impact, debris cloud expansion, and second surface pressure loadin

    Room temperature magneto-optic effect in silicon light-emitting diodes

    Get PDF
    In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicon's indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300\% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs

    A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years

    Get PDF
    Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.Peer reviewedPublisher PD

    Temperature and Field Dependence of the Mobility in Liquid-Crystalline Conjugated Polymer Films

    Full text link
    The transport properties of organic light-emitting diodes in which the emissive layer is composed of conjugated polymers in the liquid-crystalline phase have been investigated. We have performed simulations of the current transient response to an illumination pulse via the Monte Carlo approach, and from the transit times we have extracted the mobility of the charge carriers as a function of both the electric field and the temperature. The transport properties of such films are different from their disordered counterparts, with charge carrier mobilities exhibiting only a weak dependence on both the electric field and temperature. We show that for spatially ordered polymer films, this weak dependence arises for thermal energy being comparable to the energetic disorder, due to the combined effect of the electrostatic and thermal energies. The inclusion of spatial disorder, on the other hand, does not alter the qualitative behaviour of the mobility, but results in decreasing its absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    On the Correlated X-ray and Optical Evolution of SS Cygni

    Full text link
    We have analyzed the variability and spectral evolution of the prototype dwarf nova system SS Cygni using RXTE data and AAVSO observations. A series of pointed RXTE/PCA observations allow us to trace the evolution of the X-ray spectrum of SS Cygni in unprecedented detail, while 6 years of optical AAVSO and RXTE/ASM light curves show long-term patterns. Employing a technique in which we stack the X-ray flux over multiple outbursts, phased according to the optical light curve, we investigate the outburst morphology. We find that the 3-12 keV X-ray flux is suppressed during optical outbursts, a behavior seen previously, but only in a handful of cycles. The several outbursts of SS Cygni observed with the more sensitive RXTE/PCA also show a depression of the X-rays during optical outburst. We quantify the time lags between the optical and X-ray outbursts, and the timescales of the X-ray recovery from outburst. The optical light curve of SS Cygni exhibits brief anomalous outbursts. During these events the hard X-rays and optical flux increase together. The long-term data suggest that the X-rays decline between outburst. Our results are in general agreement with modified disk instability models (DIM), which invoke a two-component accretion flow consisting of a cool optically thick accretion disk truncated at an inner radius, and a quasi-spherical hot corona-like flow extending to the surface of the white dwarf. We discuss our results in the framework of one such model, involving the evaporation of the inner part of the optically thick accretion disk, proposed by Meyer & Meyer-Hofmeister (1994).Comment: 24 pages, 8 figures, 2 tables, accepted for publication in Ap

    Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point

    Get PDF
    As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)), non-Oberbeck Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Benard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient \beta(T). More precisely, it is the nonlinear T-dependence of the density \rho(T) in the buoyancy force which causes another type of NOB effect. We demonstrate that through a combination of experimental, numerical, and theoretical work, the latter in the framework of the extended Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature dependence of the thermal expension coefficient \beta(T) is significant.Comment: 18 pages, 15 figures, 3 table

    Gate-induced band ferromagnetism in an organic polymer

    Full text link
    We propose that a chain of five-membered rings (polyaminotriazole) should be ferromagnetic with an appropriate doping that is envisaged to be feasible with an FET structure. The ferromagnetism is confirmed by a spin density functional calculation, which also shows that ferromagnetism survives the Peierls instability. We explain the magnetism in terms of Mielke and Tasaki's flat-band ferromagnetism with the Hubbard model. This opens a new possibility of band ferromagnetism in purely organic polymers.Comment: 4 pages, 7 figure
    corecore