756 research outputs found

    Binary black hole spacetimes with a helical Killing vector

    Full text link
    Binary black hole spacetimes with a helical Killing vector, which are discussed as an approximation for the early stage of a binary system, are studied in a projection formalism. In this setting the four dimensional Einstein equations are equivalent to a three dimensional gravitational theory with a SL(2,C)/SO(1,1)SL(2,\mathbb{C})/SO(1,1) sigma model as the material source. The sigma model is determined by a complex Ernst equation. 2+1 decompositions of the 3-metric are used to establish the field equations on the orbit space of the Killing vector. The two Killing horizons of spherical topology which characterize the black holes, the cylinder of light where the Killing vector changes from timelike to spacelike, and infinity are singular points of the equations. The horizon and the light cylinder are shown to be regular singularities, i.e. the metric functions can be expanded in a formal power series in the vicinity. The behavior of the metric at spatial infinity is studied in terms of formal series solutions to the linearized Einstein equations. It is shown that the spacetime is not asymptotically flat in the strong sense to have a smooth null infinity under the assumption that the metric tends asymptotically to the Minkowski metric. In this case the metric functions have an oscillatory behavior in the radial coordinate in a non-axisymmetric setting, the asymptotic multipoles are not defined. The asymptotic behavior of the Weyl tensor near infinity shows that there is no smooth null infinity.Comment: to be published in Phys. Rev. D, minor correction

    On the Theory of Superfluidity in Two Dimensions

    Full text link
    The superfluid phase transition of the general vortex gas, in which the circulations may be any non-zero integer, is studied. When the net circulation of the system is not zero the absence of a superfluid phase is shown. When the net circulation of the vortices vanishes, the presence of off-diagonal long range order is demonstrated and the existence of an order parameter is proposed. The transition temperature for the general vortex gas is shown to be the Kosterlitz---Thouless temperature. An upper bound for the average vortex number density is established for the general vortex gas and an exact expression is derived for the Kosterlitz---Thouless ensemble.Comment: 22 pages, one figure, written in plain TeX, published in J. Phys. A24 (1991) 502

    Well-posedness of boundary layer equations for time-dependent flow of non-Newtonian fluids

    Full text link
    We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the well-posedness of these equations. A transformation to Lagrangian coordinates is crucial in the argument

    Lower Spectral Branches of a Particle Coupled to a Bose Field

    Full text link
    The structure of the lower part (i.e. Ï”\epsilon -away below the two-boson threshold) spectrum of Fr\"ohlich's polaron Hamiltonian in the weak coupling regime is obtained in spatial dimension d≄3d\geq 3. It contains a single polaron branch defined for total momentum p∈G(0)p\in G^{(0)} , where G(0)⊂RdG^{(0)}\subset {\mathbb R}^d is a bounded domain, and, for any p∈Rdp\in {\mathbb R}^d, a manifold of polaron + one-boson states with boson momentum qq in a bounded domain depending on pp. The polaron becomes unstable and dissolves into the one boson manifold at the boundary of G(0)G^{(0)}. The dispersion laws and generalized eigenfunctions are calculated

    Three-periodic nets and tilings: natural tilings for nets

    Get PDF
    Rules for determining a unique natural tiling that carries a given three-periodic net as its 1-skeleton are presented and justified. A computer implementation of the rules and their application to tilings for zeolite nets and for the nets of the RCSR database are described

    Higher order corrections for shallow-water solitary waves: elementary derivation and experiments

    Full text link
    We present an elementary method to obtain the equations of the shallow-water solitary waves in different orders of approximation. The first two of these equations are solved to get the shapes and propagation velocities of the corresponding solitary waves. The first-order equation is shown to be equivalent to the Korteweg-de Vries (KdV) equation, while the second-order equation is solved numerically. The propagation velocity found for the solitary waves of the second-order equation coincides with a known expression, but it is obtained in a simpler way. By measuring the propagation velocity of solitary waves in the laboratory, we demonstrate that the second-order theory gives a considerably improved fit to experimental results.Comment: 15 pages, 8 EPS figures, uses IOP class file for LaTeX2e, slightly revised versio

    Well-Posed Initial-Boundary Evolution in General Relativity

    Full text link
    Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einstein's equations in harmonic coordinates to show that it is well-posed for homogeneous boundary data and for boundary data that is small in a linearized sense. The method is implemented as a nonlinear evolution code which satisfies convergence tests in the nonlinear regime and is robustly stable in the weak field regime. A linearized version has been stably matched to a characteristic code to compute the gravitational waveform radiated to infinity.Comment: 5 pages, 6 figures; added another convergence plot to Fig. 2 + minor change

    Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images

    Full text link
    We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Our software---CHUNKYEuler---is available as open source on Bitbucket. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams

    Post-Newtonian extension of the Newton-Cartan theory

    Get PDF
    The theory obtained as a singular limit of General Relativity, if the reciprocal velocity of light is assumed to tend to zero, is known to be not exactly the Newton-Cartan theory, but a slight extension of this theory. It involves not only a Coriolis force field, which is natural in this theory (although not original Newtonian), but also a scalar field which governs the relation between Newtons time and relativistic proper time. Both fields are or can be reduced to harmonic functions, and must therefore be constants, if suitable global conditions are imposed. We assume this reduction of Newton-Cartan to Newton`s original theory as starting point and ask for a consistent post-Newtonian extension and for possible differences to usual post-Minkowskian approximation methods, as developed, for example, by Chandrasekhar. It is shown, that both post-Newtonian frameworks are formally equivalent, as far as the field equations and the equations of motion for a hydrodynamical fluid are concerned.Comment: 13 pages, LaTex, to appear in Class. Quantum Gra

    Uniqueness in MHD in divergence form: right nullvectors and well-posedness

    Full text link
    Magnetohydrodynamics in divergence form describes a hyperbolic system of covariant and constraint-free equations. It comprises a linear combination of an algebraic constraint and Faraday's equations. Here, we study the problem of well-posedness, and identify a preferred linear combination in this divergence formulation. The limit of weak magnetic fields shows the slow magnetosonic and Alfven waves to bifurcate from the contact discontinuity (entropy waves), while the fast magnetosonic wave is a regular perturbation of the hydrodynamical sound speed. These results are further reported as a starting point for characteristic based shock capturing schemes for simulations with ultra-relativistic shocks in magnetized relativistic fluids.Comment: To appear in J Math Phy
    • 

    corecore