30 research outputs found
Discriminating changes in intracellular NADH/NAD+ levels due to anoxicity and H2 supply in R. eutropha cells using the Frex fluorescence sensor
The hydrogen-oxidizing “Knallgas” bacterium Ralstonia eutropha can thrive in aerobic and anaerobic environments and readily switches between heterotrophic and autotrophic metabolism, making it an attractive host for biotechnological applications including the sustainable H2-driven production of hydrocarbons. The soluble hydrogenase (SH), one out of four different [NiFe]-hydrogenases in R. eutropha, mediates H2 oxidation even in the presence of O2, thus providing an ideal model system for biological hydrogen production and utilization. The SH reversibly couples H2 oxidation with the reduction of NAD+ to NADH, thereby enabling the sustainable regeneration of this biotechnologically important nicotinamide cofactor. Thus, understanding the interaction of the SH with the cellular NADH/NAD+ pool is of high interest. Here, we applied the fluorescent biosensor Frex to measure changes in cytoplasmic [NADH] in R. eutropha cells under different gas supply conditions. The results show that Frex is well-suited to distinguish SH-mediated changes in the cytoplasmic redox status from effects of general anaerobiosis of the respiratory chain. Upon H2 supply, the Frex reporter reveals a robust fluorescence response and allows for monitoring rapid changes in cellular [NADH]. Compared to the Peredox fluorescence reporter, Frex displays a diminished NADH affinity, which prevents the saturation of the sensor under typical bacterial [NADH] levels. Thus, Frex is a valuable reporter for on-line monitoring of the [NADH]/[NAD+] redox state in living cells of R. eutropha and other proteobacteria. Based on these results, strategies for a rational optimization of fluorescent NADH sensors are discussed
The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: A case study on iRFP
Bacteriophytochromes are promising tools for tissue microscopy and imaging due to their fluorescence in the near-infrared region. These applications require optimization of the originally low fluorescence quantum yields via genetic engineering. Factors that favour fluorescence over other non-radiative excited state decay channels are yet poorly understood. In this work we employed resonance Raman and fluorescence spectroscopy to analyse the consequences of multiple amino acid substitutions on fluorescence of the iRFP713 benchmark protein. Two groups of mutations distinguishing iRFP from its precursor, the PAS-GAF domain of the bacteriophytochrome P2 from Rhodopseudomonas palustris, have qualitatively different effects on the biliverdin cofactor, which exists in a fluorescent (state II) and a non-fluorescent conformer (state I). Substitution of three critical amino acids in the chromophore binding pocket increases the intrinsic fluorescence quantum yield of state II from 1.7 to 5.0% due to slight structural changes of the tetrapyrrole chromophore. Whereas these changes are accompanied by an enrichment of state II from ~40 to ~50%, a major shift to ~88% is achieved by remote amino acid substitutions. Additionally, an increase of the intrinsic fluorescence quantum yield of this conformer by ~34% is achieved. The present results have important implications for future design strategies of biofluorophores.DFG, 221545957, SFB 1078: Proteinfunktion durch ProtonierungsdynamikDFG, 53182490, EXC 314: Unifying Concepts in Catalysi